

Oracle Database Security Myths

December 13, 2012

Stephen Kost Chief Technology Officer Integrigy Corporation Phil Reimann
Director of Business Development
Integrigy Corporation

About Integrigy

Integrigy Published Security Alerts

Security Alert	Versions	Security Vulnerabilities
Critical Patch Update July 2011	11.5.10 – 12.1.x	 Oracle E-Business Suite security configuration issue
Critical Patch Update October 2010	11.5.10 – 12.1.x	 2 Oracle E-Business Suite security weaknesses
Critical Patch Update July 2008	Oracle 11g 11.5.8 – 12.0.x	2 Issues in Oracle RDBMS Authentication2 Oracle E-Business Suite vulnerabilities
Critical Patch Update April 2008	12.0.x 11.5.7 – 11.5.10	8 vulnerabilities, SQL injection, XSS, information disclosure, etc.
Critical Patch Update July 2007	12.0.x 11.5.1 – 11.5.10	• 11 vulnerabilities, SQL injection, XSS, information disclosure, etc.
Critical Patch Update October 2005	11.0.x, 11.5.1 – 11.5.10	 Default configuration issues
Critical Patch Update July 2005	11.5.1 – 11.5.10 11.0.x	SQL injection vulnerabilitiesInformation disclosure
Critical Patch Update April 2005	11.5.1 – 11.5.10 11.0.x	SQL injection vulnerabilitiesInformation disclosure
Critical Patch Update Jan 2005	11.5.1 – 11.5.10 11.0.x	SQL injection vulnerabilities
Oracle Security Alert #68	Oracle 8i, 9i, 10g	Buffer overflowsListener information leakage
Oracle Security Alert #67	11.0.x, 11.5.1 - 11.5.8	 10 SQL injection vulnerabilities
Oracle Security Alert #56	11.0.x, 11.5.1 - 11.5.8	Buffer overflow in FNDWRR.exe
Oracle Security Alert #55	11.5.1 – 11.5.8	Multiple vulnerabilities in AOL/J Setup TestObtain sensitive information (valid session)
Oracle Security Alert #53	10.7, 11.0.x 11.5.1 – 11.5.8	 No authentication in FNDFS program Retrieve any file from O/S

Myth: The Oracle Database is secure out of the box

Started as Project Oracle at the CIA, Unbreakable marketing campaign, ...

Reality: The Oracle Database requires significant effort to make it secure and compliant

Oracle has significantly improved in 11g the default installation by setting passwords, locking accounts, including better password profiles, and enabling default auditing, but ... #2

Myth: An Oracle Database is secure if you implement most items in a security checklist

Oracle's Database Security Checklist, Department of Defense STIG, Center for Internet Security Oracle Benchmark, SANS Oracle Database Security Checklist, etc. #2

Reality: All items in the security checklists are a base minimum and additional steps are required

A good starting point but must be tailored to the organization and application and expanded to be effective.

Database Security Checklists

Database security checklists are used to secure databases one at a time.

- Excellent baseline and starting point
- Often in conflict with application configuration
- Too many exceptions required to handle application limitations
- Need to validate compliance with checklist

Oracle Database Security Checklists

Security Checklist	Versions	Last Updated	Installation	Configuration	Administration
1. Oracle's Database Security Checklist	Oracle 9i Oracle 10g Oracle 11g	Oct 2011			
2. DOD DISA STIG	Oracle 9i Oracle 10g Oracle 11g	Aug 2010			
3. Center for Internet Security (CIS) Oracle Benchmarks	Oracle 9i Oracle 10g Oracle 11g	Dec 2011			0
4. SANS Database Security Checklist	Oracle 9i Oracle 10g	Nov 2006	0	0	0

DB Security Standards - Content

What

What needs to be secured in the database?

Why

Why is this a security issue? What's the impact?

How

What are the exact steps required to secure this? Step by step

Verification

How is this setting verified precisely? A single SQL statement

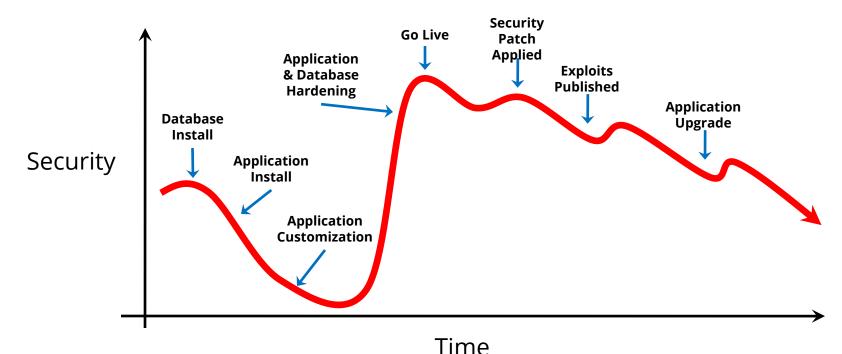
Mitigation

Besides an exception, what else can be done? Auditing?

High percentage of exceptions or variances

= FAILURE

Database security standards must anticipate common exceptions


Myth: We harden all our Oracle databases at go-live – so we are secure today

Reality: Oracle Database security decays over time and steps must be taken routinely to validate security

Database Security Decay

Database and application security decays over time due to complexity, usage, application changes, upgrades, published security exploits, etc.

Default Oracle Password Statistics

Database Account	Default Password	Exists in Database %	Default Password %
SYS	CHANGE_ON_INSTALL	100%	3%
SYSTEM	MANAGER	100%	4%
DBSNMP	DBSNMP	99%	52%
OUTLN	OUTLN	98%	43%
MDSYS	MDSYS	77%	18%
ORDPLUGINS	ORDPLUGINS	77%	16%
ORDSYS	ORDSYS	77%	16%
XDB	CHANGE_ON_INSTALL	75%	15%
DIP	DIP	63%	19%
WMSYS	WMSYS	63%	12%
CTXSYS	CTXSYS	54%	32%

^{*} Sample of 120 production databases

How to Check Database Passwords

- Use Oracle's **DBA_USERS_WITH_DEFPWD**
 - Limited set of accounts
 - Single password for each account
- Command line tools (orabf, etc.)
 - Difficult to run command line only

AppSentry

- Checks all database accounts
- Uses passwords lists > 1 million passwords
- Allows custom passwords

Myth:

(i) Your IT Security team is protecting Oracle Databases(ii) Your DBAs are protecting your Oracle Databases

Reality: Securing Oracle Databases is hard and requires a focused effort from a multidisciplinary team

Oracle DBAs, application teams, IT Security, and Internal Audit must work together to make Oracle Databases secure and compliant

Organizational Misalignment

Oracle Database technical security often not effectively handled in most organizations and "falls between the cracks."

- Database and Application Administrators
 Priority is performance, maintenance, and uptime
- * IT Security
 No understanding of Oracle Database security
- Internal Audit
 Focused on application controls, segregation of duties

What should you do?

- Ensure the database is securely configured
 Work with DBAs to understand what has been done and not done
- Understand how data is accessed and protected Learn what sensitive data is in each Oracle database, who accesses it, and what is done to protect it
- Periodically validate security and configuration Security and configuration is changing over time

Quiz - Database CPU

ACTION_TIME	ACTION	VERSION	COMMENTS
18-JUN-08 03.13.45.093449 PM	UPGRADE	10.2.0.3.0	Upgraded from 9.2.0.8.0
18-JAN-09 06.51.32.425375 AM	APPLY	10.2.0.4	CPUJan2009
09-APR-09 04.48.14.903718 PM	UPGRADE	10.2.0.4.0	Upgraded from 10.2.0.3.0
18-JUL-09 08.50.30.021401 AM	APPLY	10.2.0.4	CPUJul2009
16-OCT-10 07.18.57.042620 AM	APPLY	10.2.0.4	CPUOct2010
30-OCT-10 06.42.55.108783 AM	UPGRADE	11.1.0.7.0	Upgraded from 10.2.0.4.0

What CPU Level is this database patched to?

A. January 2007 B. January 2009

C. January 2010 D. October 2010

Quiz - Database CPU

ACTION_TIME	ACTION	VERSION	COMMENTS
18-JUN-08 03.13.45.093449 PM	UPGRADE	10.2.0.3.0	Upgraded from 9.2.0.8.0
18-JAN-09 06.51.32.425375 AM	APPLY	10.2.0.4	CPUJan2009
09-APR-09 04.48.14.903718 PM	UPGRADE	10.2.0.4.0	Upgraded from 10.2.0.3.0
18-JUL-09 08.50.30.021401 AM	APPLY	10.2.0.4	CPUJul2009
16-OCT-10 07.18.57.042620 AM	APPLY	10.2.0.4	CPUOct2010
30-OCT-10 06.42.55.108783 AM	UPGRADE	11.1.0.7.0	Upgraded from 10.2.0.4.0

What CPU Level is this database patched to?

A. January 2007

B. January 2009

C. January 2010 D. October 2010

Myth: When installing or upgrading, the latest Oracle Critical Patch Updates (CPU) are already included

Reality: For the Oracle Database, only the latest CPU at time of release is included

Almost always have to install the latest CPU when doing a fresh installation or upgrade to the database

Critical Patch Updates Baselines

Database Version Upgrade Patch	Included CPU
10.2.0.4	April 2008
10.2.0.5	October 2010
11.1.0.6	October 2007
11.1.0.7	January 2009
11.2.0.1	January 2010
11.2.0.2	January 2011
11.2.0.3	July 2011

At time of release, usually the latest <u>available</u> CPU is included

Myth: A database security tool will address our database security issues

Reality: No silver bullet exists to address all necessary aspects for database security

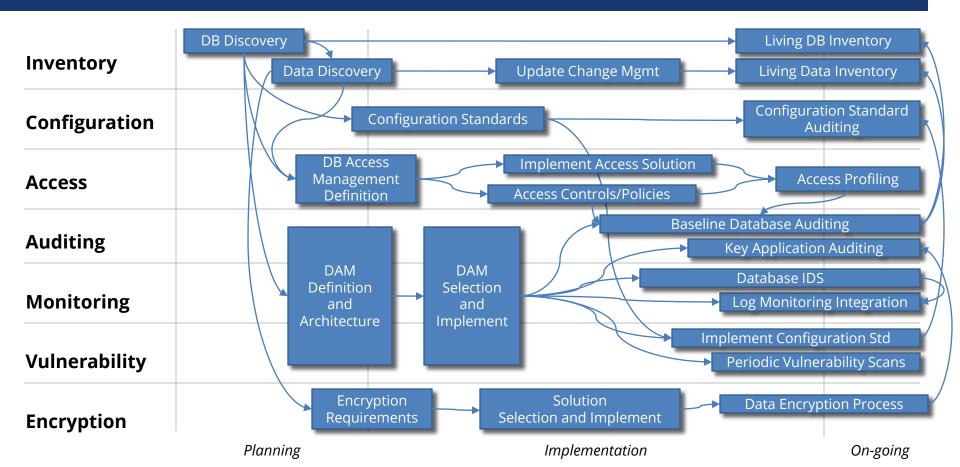
Significant security impact as Oracle EBS has a massive footprint

Traditional Database Security Approaches

The database security tool is purchased to solve the database security problem.

- Database monitoring and auditing tools are only part of the solution
- Expensive and time consuming to implement
- Complex applications cause deployment problems

Database Security Program Components


Inventory	Configuration	Access	Auditing	Monitoring	Vulnerability	Encryption
 Review existing database inventories Define scope of database discovery Perform hybrid database discovery 	 Review existing database configuration standards Define database security and compliance requirements Develop measureable database security standards 	 Define database access management definition Select and implement access solutions or policies for privileged and end-user accounts 	 Development auditing requirements for DAM Define baseline auditing for all databases Define auditing for key applications and databases based on compliance and data 	 Development monitoring requirements for DAM Define and implement database IDS Define and implement log monitoring integration 	 Development vulnerability assessment requirements for DAM Implement monitoring and compliance of configuration standard Implement periodic scanning 	 Define encryption requirements Select and implement encryption solution for initial databases Develop on-going encryption implementation

Outputs

- Database inventory
- Data inventory for key databases
- Database security and compliance requirements
- Database security standards

- Database access management
- Policies for database account management
- Database auditing definition for (1) all databases and (2) key databases
- Database monitoring and alerting definition
- Log monitoring integration
- Rules for measuring compliance with database security standards
- Encryption requirements with policies
- Encryption implementation process

Program Implementation

Myth: Oracle Database passwords are safe and secure

Reality: Oracle Database password hashes can be brute forced

Brute Forcing Database Passwords

A number of efficient password brute forcing programs exist for Oracle

- Speed is at least 1 million passwords per second for desktop/laptop
- Speed is around 100 million passwords per second for specialized hardware (FGPA/GPU)
- Only the username and hash are required
- Estimated time to brute force a password of x length –

Length	<u>Permutations</u>	Time (desktop)	Time (GPU)
1	26 (26)	0 seconds	0 seconds
2	1,040 (26 x 39)	0 seconds	0 seconds
3	40,586 (26 x 39 x 39)	0 seconds	0 seconds
4	1,582,880	1.5 seconds	0 seconds
5	61,732,346	2 minute	6 seconds
6	2,407,561,520	40 minutes	24 seconds
7	93,894,899,306	1 day	15 minutes
8	3,661,901,072,960	42 days	10 hours
9	142,814,141,845,466	1,600 days	16 days

Oracle Database Passwords

- Oracle Database password algorithm published
 Oracle 11g hash changed to SHA-1 old DES hash also stored
- * Hash is unique to the username, but common across all versions and platforms of the Oracle database SYSTEM/MANAGER is always D4DF7931AB130E37 in every database in the world
- Database password hashes cloned to development Security and configuration is changing over time

Myth: Oracle Database audit data is always accurate and reliable

Reality: Most Oracle Database audit data fields can be spoofed

Audit Trails Destinations and Values

Session Value	V\$SESSION View	SYS_CONTEXT Function	SYS.AUD\$ DBA_AUDIT_*	FGA_LOG\$ AUDIT_TRAIL	Audit Vault
DB User Name	✓	✓	✓	✓	✓
Schema Name	✓	✓			
OS User Name	✓	✓	✓	✓	✓
Machine	✓	✓	✓	✓	✓
Terminal	✓	✓	✓		✓
Program	✓				✓
IP Address		✓	✓		✓
Client Process ID	✓				
Module	✓	✓			
Action	✓	✓			
Client Info	✓	✓			✓
Client ID	✓	✓	\checkmark	✓	\checkmark

Auditing Session Data

Database User Name	OS User Name	Schema Name
IP Address	Machine/ User host	Terminal
Program	Client Process ID	Module
Action	Client Info	Client ID

Auditing Session Data - Spoofable

Database User Name	OS User Name	Schema Name
IP Address	Machine/ User host	Terminal
Program	Client Process ID	Module
Action	Client Info	Client ID

Contact Information

Stephen Kost

Chief Technology Officer

Integrigy Corporation

web: www.integrigy.com

e-mail: info@integrigy.com

blog: integrigy.com/oracle-security-blog

youtube: youtube.com/integrigy