
Effectively Using Oracle Blockchain Tables

April 22, 2021

Stephen Kost

Chief Technology Officer

Integrigy Corporation

Phil Reimann

Director of Business Development

Integrigy Corporation

Products Services

AppSentry
ERP Application and Database

Security Auditing Tool

AppDefend
Enterprise Application Firewall

for Oracle E-Business Suite
and PeopleSoft

Protects
Oracle EBS

& PeopleSoft

Validates
and Audits

Security

ERP Applications

Oracle E-Business Suite
and PeopleSoft

Databases

Oracle, Microsoft SQL Server,
DB2, Sybase, MySQL, NoSQL

Security Assessments

ERP, Database, Sensitive Data, Pen Testing

Compliance Assistance

SOX, PCI, HIPAA, GLBA

Security Design Services

Auditing, Encryption, DMZ

Verify
Security

Build
Security

Ensure
Compliance

Integrigy Research Team
ERP Application and Database Security Research

About Integrigy

Oracle Database Releases

Source – Oracle Database (RDBMS) Releases Support Status Summary (Doc ID 161818.1) – January 15, 2021

12.2
Family

Oracle Blockchain Tables

▪ Insert-only, tamper-resistant table

▪ Rows are chained using a
cryptographic hashing approach

▪ Data cannot be modified by DBAs or
other users

▪ Optional row signing by user for
additional fraud protection

▪ Generally, operates as a standard
database table

▪ Common use cases are for audit
trails, compliance data, ledgers, and
chain of custody or provenance
information

▪ Available in 19.10 (January 2021)
and 21c

19c Blockchain Tables

▪ Requires 19.10 minimum (January 2021)

▪ 19.10 (January 2021) – must apply patch 32431413

– Required Blockchain Tables library is missing

– Results in ORA-901: Invalid Create Statement when creating a Blockchain table

– See Oracle Support Note Doc ID 2768266.1

– 32431413: 19.10 RU FOR ORACLE IS MISSING QCPLK.O WHICH GETS LINKED INTO

LIBGENERIC19.A

▪ 19.11 (April 2021) – no patches required

19c Blockchain Tables

▪ Initialization parameter COMPATIBLE must be set to 19.10.0 or greater

– Default for 19c is 19.0.0

– Locks pluggable databases to 19.10.0 and may not be moved to lower versions

– alter system set compatible='19.10.0' scope=spfile;

ORA-00406: COMPATIBLE parameter needs to be 19.10.0.0.0 or greater

ORA-00722: Feature "Blockchain table"

00406. 00000 - "COMPATIBLE parameter needs to be %s or greater"

*Cause: The COMPATIBLE initialization parameter is not high

enough to allow the operation. Allowing the command would make

the database incompatible with the release specified by the

current COMPATIBLE parameter.

*Action: Shutdown and startup with a higher compatibility setting.

CREATE BLOCKCHAIN TABLE <table>
(<columns)

▪ Create table DDL similar to standard tables

NO DROP [UNTIL <0+> DAYS IDLE]

▪ NO DROP without days will prevent table

from ever being dropped

▪ Use 1 DAYS during testing so table can be

dropped

▪ Don’t use 0 DAYS as this may cause errors

NO DELETE { [LOCKED] |
(UNTIL <16+> DAYS AFTER INSERT
[LOCKED]) }

▪ NO DELETE prevents rows from ever being

deleted – cannot be changed

▪ UNTIL number DAYS AFTER INSERT prevents

rows from deleted for x days

▪ LOCKED does not allow setting to be changed

▪ Retention periods can only be increased

HASHING USING sha2_512 VERSION v1
▪ sha2_512 hash and v1 version are fixed in

this version

Blockchain Table Creation

DROP TABLE
▪ Cannot drop until after NO DROP days has expired

▪ ORA-05723: drop blockchain table <> not allowed

ALTER TABLE

▪ Cannot modify table structure (add, drop, rename columns) or

move tablespace

▪ ORA-05715: operation not allowed on the blockchain table

DROP TABLESPACE ▪ ORA-05723: drop blockchain table <> not allowed

TRUNCATE TABLE
▪ Never allowed

▪ ORA-05715: operation not allowed on the blockchain table

UPDATE
▪ Never allowed

▪ ORA-05715: operation not allowed on the blockchain table

DELETE

▪ Never allowed – use

DBMS_BLOCKCHAIN_TABLE.DELETE_EXPIRED_ROWS

▪ ORA-05715: operation not allowed on the blockchain table

DROP USER CASCADE ▪ ORA-00604/ORA-05723 if user has unexpired rows

Blockchain Table DDL and DML

Add ORA-05723 and ORA-05715 to list of monitored Oracle error messages.

ORABCTAB_INST_ID$ ▪ RAC instance ID

ORABCTAB_CHAIN_ID$
▪ Each table may have up to 32 chains (0-31) in current use to

allow for parallelism

ORABCTAB_SEQ_NUM$ ▪ Row number in a chain

ORABCTAB_CREATION_TIME$ ▪ Row creation timestamp, always UTC

ORABCTAB_USER_NUMBER$ ▪ USER_ID of the user who inserted row (DBA_USERS.USER_ID)

ORABCTAB_HASH$ ▪ Calculated row hash (SHA2_512, v1)

ORABCTAB_SIGNATURE$,
ORABCTAB_SIGNATURE_ALG$,
ORABCTAB_SIGNATURE_CERT$

▪ Signature information when row signing is used

▪ Signature based on certificate and ORABCTAB_HASH$

ORABCTAB_SPARE$ ▪ Future use

Blockchain Table Hidden Columns

{CDB|DBA|ALL|USER}_
BLOCKCHAIN_TABLES

▪ Information about blockchain tables including row retention

period, table retention period, and hashing algorithm used to

chain rows

▪ View over the SYS.BLOCKCHAIN_TABLE$ table

Blockchain Table Data Dictionary Views

SELECT row_retention "Row Retention Period", row_retention_locked "Row Retention Lock",
table_inactivity_retention "Table Retention Period", hash_algorithm "Hash Algorithm"
FROM dba_blockchain_tables WHERE table_name='BANK_LEDGER';

Row Retention Period Row Retention Lock Table Retention Period Hash Algorithm
-------------------- ------------------ ------------------------ --------------

16 YES 31 SHA2_512

DELETE_EXPIRED_ROWS
▪ Deletes all expired rows or rows prior to a date

▪ Must have DELETE on table in order to delete rows

VERIFY_ROWS

▪ Verifies all rows or rows between two timestamps and

optionally signatures for each row

▪ Must have SELECT on table in order to verify rows

SIGN_ROW

▪ Sign a row – user must be the one who inserted the row

▪ A row can only be signed once

▪ Must have INSERT on table in order to sign a row

▪ Must also have SELECT on table to sign a row as instance id,

chain id, and row id are required

VERIFY_TABLE_BLOCKCHAIN
▪ Verifies rows between two signed rows

▪ Must have SELECT on table in order to verify rows

DBMS_BLOCKCHAIN_TABLE Package

Blockchain Table Observations

▪ As blockchain tables are new to Oracle Database 19c and 21c, should be

carefully tested as issues and bugs may be encountered for the next 6 to

12 months

▪ Multiple security vulnerabilities will likely be fixed over the next 6 months

due to such issues as bypasses of DROP TABLE

▪ Blockchain tables should not be used for high volume transactional tables

due to overhead required for the blockchain

▪ No margin for error in determining DROP and DELETE days, so blockchain

tables must be well designed from the beginning

– Set BLOCKCHAIN_TABLE_MAX_NO_DROP to 0 for test and development

▪ Signing rows requires a certificate for each database user although most

applications use a single database account

▪ Use in combination with Oracle TDE tablespace encryption and Table

Compression to help protect against direct manipulation of data by

editing data files

Key Blockchain Tables Restrictions and Limitations

▪ Carefully review the restrictions and limitations for blockchain tables

▪ Not all datatypes allowed such as no TIMESTAMP WITH TIME ZONE

▪ No inserting data using parallel DML or direct-path loading

▪ No distributed transactions or XA transactions

▪ No flashback table

▪ No Oracle Virtual Private Database (VPD) policies or Oracle Label Security

(OLS) policies

▪ Oracle Data Pump Export and Import removes the blockchain from the table

▪ Blockchain table can not be created in the root container database

– ORA-05729: blockchain or immutable table cannot be created in root

container

Blockchain Table Auditing

▪ Audit key blockchain table events, monitor for ORA-05723 and ORA-05715 errors

▪ Assuming Unified Auditing with 19c and 21c

CREATE AUDIT POLICY blockchain_table_actions

ACTIONS drop table, truncate table, drop tablespace, drop user;

AUDIT POLICY blockchain_table_actions WHENEVER NOT SUCCESSFUL;

CREATE AUDIT POLICY blockchain_tables

ACTIONS update ON schema.t1, delete ON schema.t1, alter ON schema.t1,

update ON schema.t2, delete ON schema.t2, alter ON schema.t2;

AUDIT POLICY blockchain_tables;

CREATE AUDIT POLICY blockchain_package

ACTIONS EXECUTE ON sys.dbms_blockchain_table;

AUDIT POLICY blockchain_package;

1

2

3

Blockchain Table Integrity

Oracle Database 21c Database Administrator’s Guide

“An important aspect of maintaining the integrity of blockchain table data is to ensure that

all rows are intact. Computing a signed digest provides a snapshot of the metadata and data

about the last row in all chains at a particular time. You must store this information in [an

external] repository. Signed digests generated at various times comprise the input to the

DBMS_BLOCKCHAIN_TABLE.VERIFY_TABLE_BLOCKCHAIN procedure. Use this procedure to

verify the integrity of rows created between two specified times.”

▪ Use Integrigy AppSentry to periodically retrieve, store, and verify the integrity of

all blockchain tables – “anchor the blockchain”

– Fingerprints the database to verify the database

– Detects all blockchain tables

– Fingerprints the table to verify the table

– Generates a signed digest for each blockchain table

– “Anchors” the signed digests for each blockchain table to AppSentry, AWS Quantum Ledger

Database, or Hedera Hashgraph (future Ethereum and Oracle, Azure, and AWS blockchains)

– Verifies since last signed digest to confirm the integrity of the blockchain table

AppSentry Blockchain – Blockchain Table Anchor

Corporate data center or Cloud Cloud

Oracle
19c/21c

Oracle
19c/21c

Oracle
19c/21c

Managed
Blockchain

(OCI, AWS, Azure)

Amazon Quantum
Ledger Database

Hedera Hashgraph

AppSentry

▪ Dashboard
▪ Scheduler
▪ Alerting
▪ Proofs

Verifies near real-
time or up to

once per week

All blockchain tables
are anchored and

verified

Use what makes sense
Proof sent to private blockchain,
Anchor sent to public blockchain

Oracle Immutable Tables

▪ Immutable = unable to be changed

▪ Insert-only, tamper-resistant tables without blockchain

▪ Introduced as part of 19.11 (April 2021) and 21.3 (April 2021)

– Initialization parameter COMPATIBLE must be set to 19.11.0 or 21.3.0

▪ Includes same system generated hidden columns as Blockchain Table but

only two columns are populated –

– ORABCTAB_CREATION_TIME$

– ORABCTAB_USER_NUMBER$

▪ Support VPD policies, distributed transactions, and XA transactions

▪ Immutable tables should be used for every audit trail, security log, and

compliance table if a blockchain table is not required

Create Immutable Table

create immutable table imt_t1 (

id number,

name varchar2(20),

quantity number,

created_date date

)

no drop until 0 days idle

no delete until 16 days after insert;

{CDB|DBA|ALL|USER}_
IMMUTABLE_TABLES

▪ Information about blockchain tables including row retention

period and table retention period

▪ View over the SYS.IMMUTABLE_TABLE$ table

Immutable Table Data Dictionary Views

SELECT row_retention "Row Retention Period", row_retention_locked "Row Retention Lock",
table_inactivity_retention "Table Retention Period"
FROM dba_immutable_tables
WHERE table_name = 'TRADE_LEDGER';

Row Retention Period Row Retention Locked Table Retention Period
-------------------- -------------------- ----------------------

110 NO 16

AppSentry Blockchain – Standard Table Anchor

▪ AppSentry Blockchain allows you to anchor any Oracle table when you

can’t use Blockchain or Immutable tables – create digital trust

– Pre-19.10 databases

– Package applications

▪ Generates Merkle trees for all new and changed rows

– A Merkle tree is a tree of hashes that allow for efficient and secure verification of

large structures of data

– Triggers and Flashback may be used to enhance detection of table inserts and

changes

– Merkle trees are calculated in-database so no sensitive data is transferred outside

of the database server

▪ Proofs are anchored to private or public blockchains

– Amazon Quantum Ledger Database – cloud ledger database

– Hedera Hashgraph – public distributed ledger with consistent pricing and fast, low-

latency transactions

– Plugin API to integrate any service or blockchain network

AppSentry Blockchain – Standard Table Anchor

Corporate data center or Cloud Cloud

Oracle
any version

Oracle
any version

Oracle
any version

Managed
Blockchain

(OCI, AWS, Azure)

Amazon Quantum
Ledger Database

Hedera Hashgraph

AppSentry

▪ Dashboard
▪ Scheduler
▪ Alerting
▪ Proofs

Verifies near real-time
or up to once per
week (per table)

Merkle trees are
generated locally,
no sensitive data
leaves the server

Use what makes sense
Proof sent to private blockchain,
Anchor sent to public blockchain

Stephen Kost

Chief Technology Officer

Integrigy Corporation

web – www.integrigy.com

e-mail – info@integrigy.com

blog – integrigy.com/oracle-security-blog

youtube – youtube.com/integrigy

linkedin – linkedin.com/company/integrigy

twitter – twitter.com/integrigy

Copyright © 2021 Integrigy Corporation

Integrigy Contact Information

