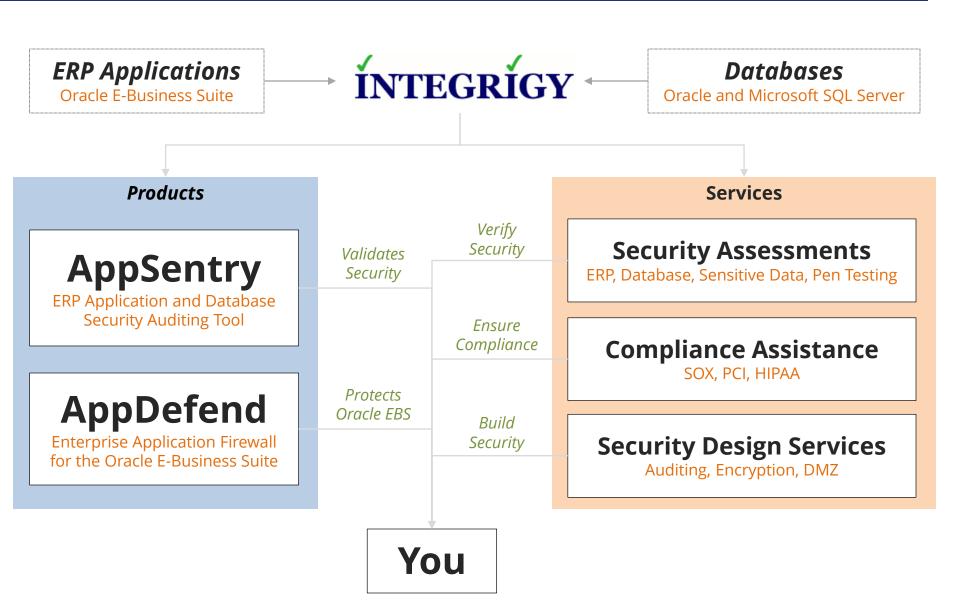
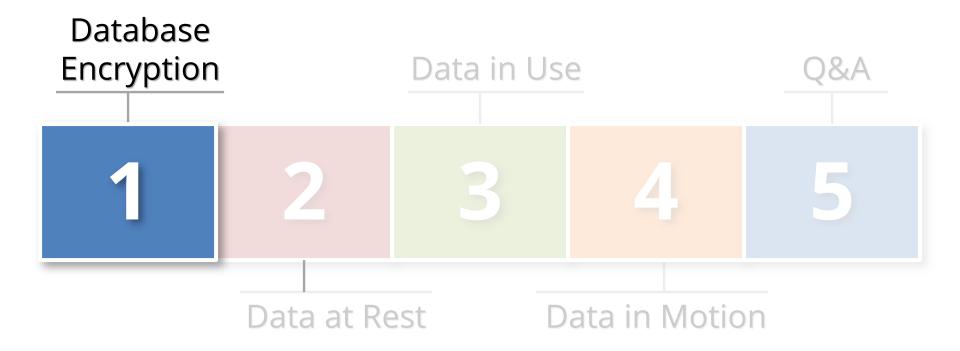

All Things Oracle Database Encryption

January 21, 2016


Stephen Kost
Chief Technology Officer
Integrigy Corporation

Phil Reimann
Director of Business Development
Integrigy Corporation


Agenda

About Integrigy

Agenda

What is Sensitive Data?

Payment Card Industry Data Security Standard (PCI-DSS 2.0)	 Credit Card Number Primary Account Number (PAN) CVV/CV2/CID 3 digits on the back for Visa/MC 4 digits on the front for AMEX Magnetic Stripe Data (very rare)
State Privacy Regulations (employees, customers, Vendors)	 First and last name Plus one of the following: Social security number Credit card number Bank account number Financial account number Driver license or state ID number
HIPAA Privacy Standard/Rule	 First and last name Plus one of the following (Protected Health Information) "the past, present, or future physical or mental health, or condition of an individual" "provision of health care to an individual" "payment for the provision of health care to an individual"

Where Sensitive Data might be?

Application Tables

- Tables owned by the application and probably well-known

Custom tables

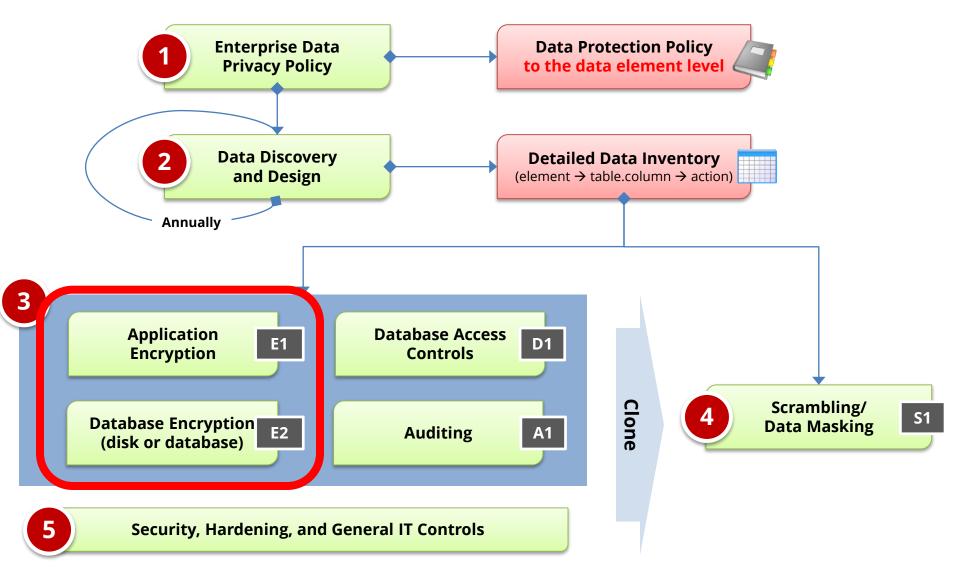
Customizations to package applications may be used to store or process sensitive data

"Maintenance tables"

- DBA copies tables to make backup prior to direct SQL update
- hr.per_all_people_f_011510

Interface tables

 Credit card numbers are often accepted in external applications and stored in temporary tables prior to processing


Interface files

Flat files used for interfaces or batch processing

Log files

Log files generated by the application (e.g., iPayment)

Integrigy Data Protection Process

Production

Test/Development

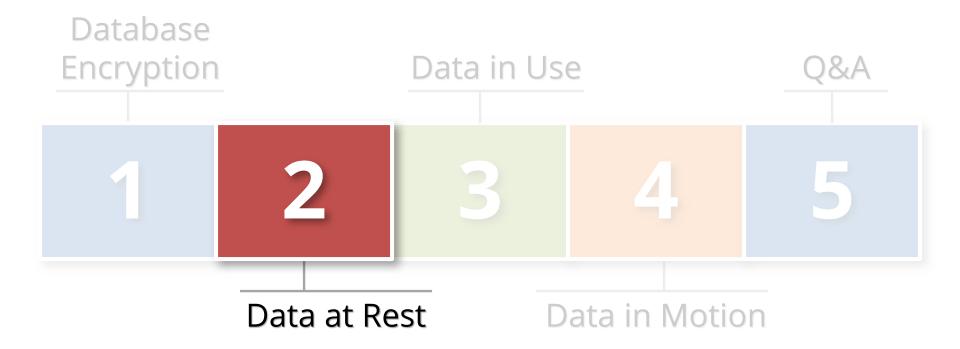
Types of Encryption

Storage (Data at rest)

- Disk, storage, media level encryption
- Encryption of data at rest such as when stored in files or on media

Access (Data in use)*

- Application or database level encryption
- Encryption of data with access permitted only to a subset of users in order to enforce segregation of duties


Network (Data in motion)

- Encryption of data when transferred between two systems
- SQL*Net encryption (database)

Storage/Access Oracle Encryption Solutions

Application (access ~ role)	 Native application encryption Database Encryption API (DBMS_CRYPTO/Voltage) 	Data – in
Database (access ~ db account)	View/Trigger Encryption	Use
	Transparent Data Encryption (TDE)	
Disk/Storage	Third-party Solutions (e.g., Vormetric)	Data
(access = database)	■ Disk/SAN Vendor Encryption Solutions	at Rest
	■ Backup Encryption (e.g., RMAN)	

Agenda

What is Oracle TDE?

Transparent database encryption

- Requires no application code or database structure changes to implement
- Only major change to database function is the Oracle
 Wallet must be opened during database startup
- Add-on feature licensed with Advanced Security Option

Limited to encrypting only certain columns

- Cannot be a foreign key or used in another database constraint
- Only simple data types like number, varchar, date, ...
- Less than 3,932 bytes in length

What does TDE do and not do?

- TDE only encrypts "data at rest"
- TDE protects data if following is stolen or lost -
 - disk drive
 - database file
 - backup tape of the database files
- An authenticated database user sees no change
- Does TDE meet legal requirements for encryption?
 - California SB1386, Payment Card Industry Data Security
 - Ask your legal department

TDE Encryption Misconceptions

Not an access control tool

- Encryption does not solve access control problems
- Data is encrypted the same regardless of user

Malicious employee protection

- Encryption does not protect against malicious privileged employees and contractors
- DBAs have full access

More is not better

- Performance cost of encryption
- Cannot encrypt everything

Column vs. Tablespace Encryption (Sample)

Column encryption

- Fairly straight forward for simple cases such as NATIONAL_IDENTIFIER in HR.PER_ALL_PEOPLE_F
- Encryption done in place using ALTER TABLE
- Do not use SALT if column is indexed
- Use for standard applications columns

Tablespace encryption

- Tablespace encryption only supported in 11g and 12c
- Tablespace must be exported and imported to implement encryption
- Use for custom tablespaces or entire database

Tablespace Encryption

- Protects during operations like JOIN and SORT
 - Data is safe when it is moved to temporary tablespaces
- Allows index range scans on data in encrypted tablespaces
 - Not possible with column-based transparent data encryption

Performance Considerations

Impact is limited to CPU performance

- Data must be encrypted and decrypted
- Highly dependent on access patterns to data
- Hardware cryptographic acceleration with AES-NI processors

No disk I/O read or write impact

- Change is not significant

Column Encryption

5% to 20% CPU performance impact for several customers

Tablespace Encryption

- Encrypting entire database is feasible
- 5% to 10% CPU performance impact for one customer on high transaction volume tables

Performance Considerations

Range scan (between/like) on indexed column

- where a.birth_date between start_date and end_date
- Index will not be used full table scan

2. Join on encrypted columns

- where a.ssn = b.ssn
- Encryption key is unique for each table
- Full table scan of both tables
- All values in both tables decrypted

TDE Best Practices

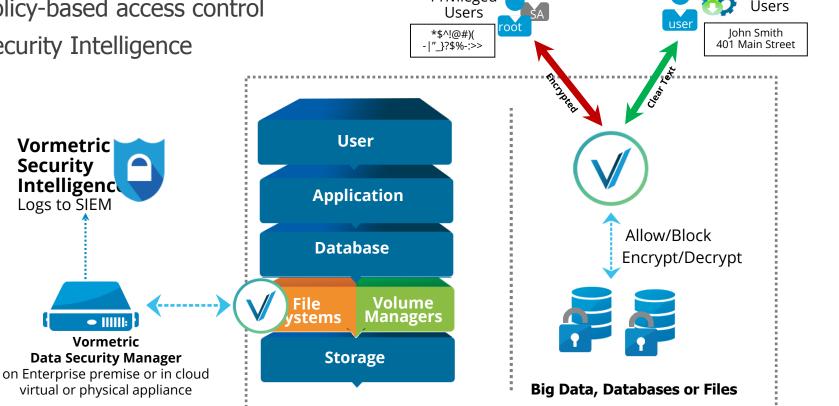
- Ensure wallet is not backed up with the db files
- Protect the wallet
 - Backup the wallet
 - File permissions
- When encrypting large volumes of data, should create a new tablespace and shred the old one
 - Unencrypted data may remain in tablespace blocks
- Mix and match column and tablespace encryption
 - Column for standard tables and tablespace for custom
- Avoid using PKI Certificates for master key

Oracle TDE Demonstration

Hardware Security Modules (HSM)

HSMs are physical devices

- Secure storage for encryption keys
- Secure computational space (memory) for encryption and decryption


Oracle TDE fully certified to use HSMs

- More secure alternative to the Oracle wallet
- Several third party vendors
 - Vormetric

Third-Party Encryption - Vormetric

Vormetric Transparent Encryption

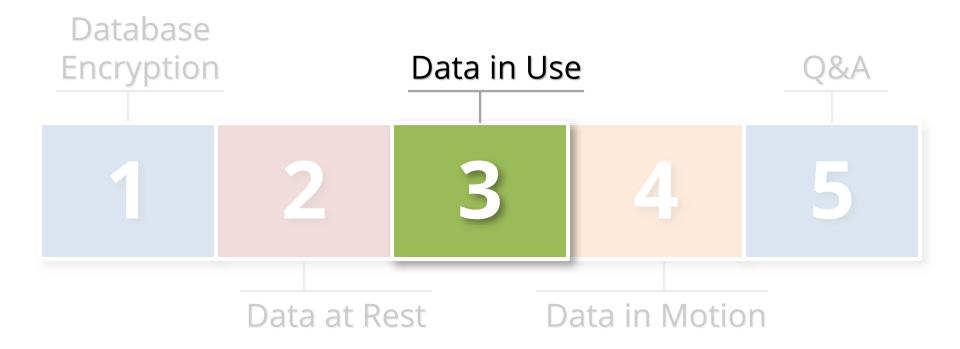
- Protects structured/unstructured data
- Encryption & key management
- Policy-based access control
- Security Intelligence

Privileged

Approved Processes and

Auditing Oracle TDE Usage

Key management is critical


- Where is wallet stored? Auto open? Backed up?
- How is wallet protected? HSM used?

Column vs. Tablespace encryption

- What tables, columns, and tablespaces?
- What Encryption algorithms?

```
SELECT * FROM dba_encrypted_columns;
SELECT tablespace name, encrypted FROM dba tablespaces;
```

Agenda

Data in Use Encryption Solutions

Application	 Application encrypts and decrypts when reading and writing data 		
(access ~ role)	 Uses standard or custom encryption routines 		
	Encryption routines check security		
	 View/Trigger Encryption Solution 		
Database	 View used when reading data 		
(a a a a a a de la a a a a constata)	 Trigger used when writing data 		
(access ~ db account)	 Calls encryption routines which check security 		

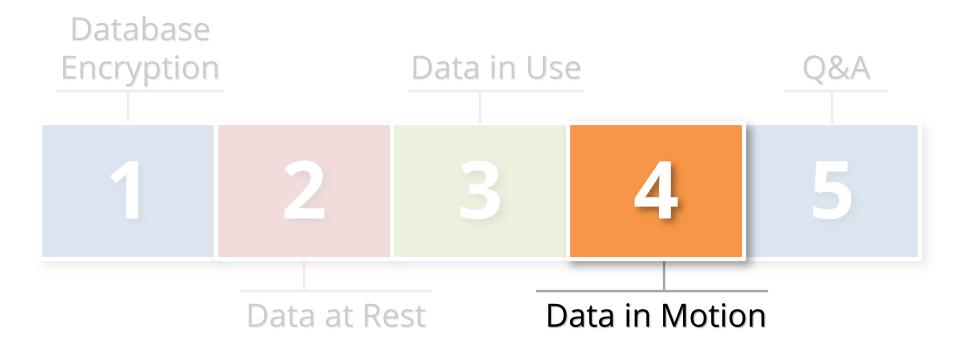
Data in Use Encryption Solutions

	■ DBMS_CRYPTO				
	 Supports most major encryption and hash algorithms 				
Oracle Database	 New database versions add newer encryption and hash algorithms 				
	 No key management 				
	■ DBMS_OBFUSCATION_TOOLKIT				
	 Deprecated and should not be used 				
Third Party	■ Voltage API				
	 Format preserving encryption 				
	■ Vormetric API				
	■ Many others such as OPENSSL, etc.				

Auditing Application Encryption

Difficult to audit as it is application specific and stored in application code

Some package applications have robust encryption capabilities


Key management is critical

- How are keys stored, protected, rotated?
- Keys should not be hard-coded in wrapped PL/SQL code fairly common even for packaged applications

Methods and types of encryption

- What routines are used for encryption? Standard database, third-party libraries, custom developed?
- Custom developed routines should never be used
- What encryption algorithms are used?

Agenda

Database Network Encryption

Oracle SQL*Net Encryption

- Encrypts SQL*Net traffic between the client and the database listener
- Configured in sqlnet.ora
- Now included with the database used to be part of Advanced Security Options (ASO)

All data will be encrypted transmitted between client and server

 The database password is always protected and never sent in clear-text

SQL*Net Encryption Setup

 Configure in sqlnet.ora on either or both the server and client

Server

```
SQLNET.ENCRYPTION_SERVER = [accepted | rejected | requested | required]
SQLNET.ENCRYPTION_TYPES_SERVER = (encryption algorithms)
```

Client

```
SQLNET.ENCRYPTION_CLIENT = [accepted | rejected | requested | required]
SQLNET.ENCRYPTION_TYPES_CLIENT = (encryption algorithms)
```

Algorithms = AES256 AES192 AES128 3DES168 3DES112
 RC4_256 RC4_128 RC4_56 RC4_40 DES DES40

SQL*Net Encryption Options

		SERVER				
		Required	Requested	Accepted	Rejected	
Client	Required	On	On	On	ERROR	
	Requested	On	On	On	Off	
	Accepted	On	On	Off	Off	
	Rejected	ERROR	Off	Off	Off	

Auditing SQL*Net Encryption

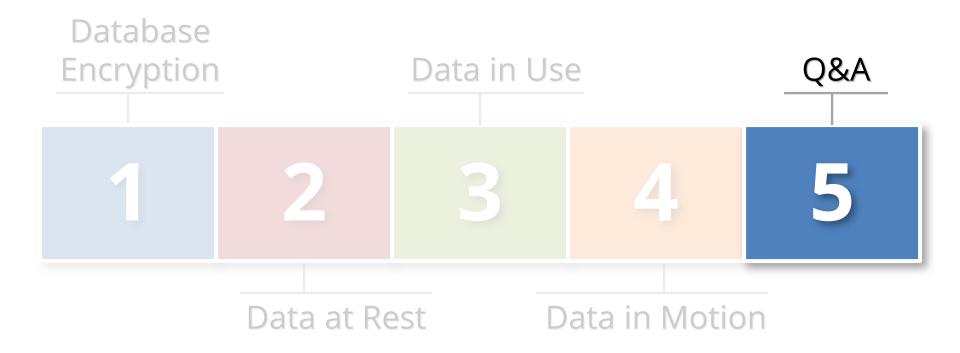
- Can check in the database if connections are using encryption
 - Do not know what encryption algorithm is being used

```
select NETWORK_SERVICE_BANNER
from v$session_connect_info
```

NETWORK_SERVICE_BANNER

Windows NT TCP/IP NT Protocol Adapter for 32-bit Windows: Version 11.2.0.2.0 - Production Oracle Advanced Security: **encryption service** for 32-bit Windows: Version 11.2.0.2.0 - Production Oracle Advanced Security: crypto-checksumming service for 32-bit Windows: Version 11.2.0.2.0 - Prod

Auditing SQL*Net Encryption


Review the settings in sqlnet.net

- If encryption is required, then REQUIRED should be used
- Review the encryption algorithms used should be always AES and 3DES

Encryption and auditing

 If database auditing solutions such as Imperva or Guardium are used in network tap mode, then encryption may blind these tools

Agenda

Contact Information

Stephen Kost
Chief Technology Officer
Integrigy Corporation

web: www.integrigy.com

e-mail: info@integrigy.com

blog: integrigy.com/oracle-security-blog

youtube: youtube.com/integrigy