

INTEGRIGY

Hashing Credit Card Numbers: Unsafe Application Practices 1 Copyright © 2007 Integrigy Corporation

 

February 27, 2007

Security Analysis

 Hashing Credit Card Numbers:

Unsafe Application Practices

OVERVIEW

Cryptographic hash functions seem to be an ideal method for protecting and securely storing credit

card numbers in ecommerce and payment applications [1]. A hash function generates a secure,

one-way digital fingerprint that is irreversible and meets frequent business requirements for

searching and matching of card numbers. However, due to the predictability of credit card

numbers and common business requirements in processing credit cards, ecommerce and payment

applications may implement such hashing of card numbers in an unsafe manner that allows an

attacker to obtain a large percentage of card numbers by brute forcing compromised hashes in a

matter of hours.

This paper is an analysis of actual application practices for storing of credit card number hashes

and a review of brute force attack methods against such hashes. The concepts presented in this

paper have been broadly described prior by Kurt Seifried in 2001 [2], John Deters in 2002 [3],

Branden Williams in 2006 [4], and many others, nevertheless some ecommerce and payment

applications store credit card numbers in unsafe and easily brute forced ways. The impetus for this

paper was identification of this issue during multiple application security assessments. The

objective is to highlight the weakness of common credit card hashing techniques and to educate

application architects and programmers on the issues of storing credit card numbers as hashes.

PCI, CARD NUMBERS, AND BUSINESS REQUIREMENTS

1. PAYMENT CARD INDUSTRY DATA SECURITY STANDARD

PCI DSS Requirement 3.4 –

Render [credit card numbers], at minimum, unreadable anywhere it is stored (including data on portable digital media,

backup media, in logs, and data received from or stored by wireless networks) by using any of the following approaches:

 Strong one-way hash functions (hashed indexes)

 Truncation

 Index tokens and pads (pads must be securely stored)

 Strong cryptography with associated key management processes and procedures

INTEGRIGY

Hashing Credit Card Numbers: Unsafe Application Practices 2 Copyright © 2007 Integrigy Corporation

 

The Payment Card Industry (PCI) Data Security Standard (DSS) 1.1 [5] requirement is clear

regarding the need to make credit card numbers unreadable. Many applications use encryption

and/or hashing as primary methods to achieve compliance with Requirement 3.4. PCI DSS does

allow for compensating controls for protecting card numbers, however, making card numbers

unreadable is the preferred approach.

PCI DSS Requirement 3.3 –

Mask [credit card numbers] when displayed (the first six and last four digits are the maximum number of digits to be

displayed).

PCI DSS Requirement 3.3 specifies that up to the first six and last four digits (Last-4) may be

displayed to the user. Most applications do routinely display the Last-4 on web pages, application

screens, reports, and receipts. Portions of the first six digits or a representation of the data (i.e.,

credit card brand) usually are displayed in back-end processing or are used for some business

processes.

These two requirements map to similar requirements in the Visa U.S.A. CISP Payment Application

Best Practices (Requirements 2.2 and 2.1, respectively) [6], which in the future may be a

requirement for all payment processing applications.

When the entire credit card number is hashed, the application must store portions of the prefix and

suffix in some manner to allow for retrieval and matching. The amount of information stored will

vary based on business requirements and diligence of the application design. The PCI DSS

requirements are ambiguous as to the acceptability of storing the first six (or portions of) and/or

last four digits in plain-text, which is often done when the card number is hashed.

2. PREDICTABILITY OF CREDIT CARD NUMBERS

Many of the digits of a credit card number are predictable based on card brand and other factors.

For almost all card brands, the last digit is a check digit calculated using the Luhn checksum

algorithm. For more information on credit card numbering, see the excellent Wikipedia entry on

credit card numbering (http://en.wikipedia.org/wiki/Credit_card_numbers) [7].

For readability and for those not familiar credit card industry terms, the following simplified terms

will be consistently used to describe portions of a credit card number –

Term Description

Card Number Full 14 to 16 digit account number, referred to as the

Primary Account Number (PAN) in PCI DSS. Card

numbers may be up to 19 digits, but most major

brands are in the range of 14 to 16 digits.

http://en.wikipedia.org/wiki/Credit_card_numbers

INTEGRIGY

Hashing Credit Card Numbers: Unsafe Application Practices 3 Copyright © 2007 Integrigy Corporation

 

Brand The credit card brand – Visa, MasterCard, American

Express, Discover, Diners Club, JCB, etc. Due to

processing agreements between the brands, the brand

will be defined as the brand indicated by the brand ID

in the card number rather than the brand name on the

card.

Brand ID The first one to five digits that represents the brand –

a brand may have multiple brand IDs. The Brand ID

does not include the bank identifier for brands like Visa

and MasterCard.

Common Prefix or

Bank Prefix

The first three to six digits that are significant to a

brand card number. This information is not generally

available, but unauthorized lists of prefixes and bank

identifiers are available on some Internet sites for the

most popular card brands.

Prefix 6 The first six digits of the card number, regardless of

brand or length.

Last 4 The last four digits of the card number, regardless of

brand or length. This includes the last digit, which is

the check digit.

Check Digit The last digit of the card number, which for most

brands is the check digit and is calculated using the

Luhn checksum algorithm of the prior digits.

This paper will focus only on the most popular card brands in the United States and Europe. The

five PCI Security Standards Council founding brands (American Express, Discover Financial

Services, JCB, MasterCard Worldwide, and Visa International) and Diners Club are included. We

also assume all remaining digits of the card number are randomly assigned by the brand and there

is no algorithm or other method to pre-determine these digits – most likely this assumption is

incorrect for some card brands.

3. CREDIT CARD PROCESSING BUSINESS REQUIREMENTS

Common business requirements for processing and handling credit cards determine the amount of

card data stored and what portions of the card number may be required to be retrieved after the

initial transaction. These requirements will vary from merchant to merchant based on payment

processor and type of retailer (i.e., brick and mortar versus ecommerce). Although in general,

almost all merchants have some business requirements to handle customer returns/credits,

reconciliation, chargebacks, and retrieval requests.

ECOMMERCE AND PAYMENT APPLICATIONS

Usually ecommerce and payment applications must satisfy a number of common business

requirements related to the processing and handling of customer payments using credit cards.

These processes may be manual or occur through automated interfaces and batch processing. The

following are common business processes that occur after the transaction –

INTEGRIGY

Hashing Credit Card Numbers: Unsafe Application Practices 4 Copyright © 2007 Integrigy Corporation

 

 Chargeback – Chargeback reports only include the card number, transaction date, reference

number, approval code, and/or transaction amount. The transaction and payment record

must be accurately and efficiently located using the limited number of fields.

 Retrieval Request – Retrieval requests only include the card number, transaction date,

reference number, and/or transaction amount. The transaction and payment record must

be accurately and efficiently located using the limited number of fields.

 Customer Return or Credit – The card used in the original transaction is usually used to

issue a credit. Common practice when the card number is hashed is to display the Last-4 to

the employee and the full card number is re-entered for the credit transaction. Usually, the

original transaction and payment record is identified using transaction ID from the receipt or

customer number.

 Reconciliation – Daily or monthly credit card activity reports and payments need to be

reconciled against the actual transactions to ensure all transactions were processed and the

proper payment amount was credited. Activity reports often only include the card number,

transaction date, reference number, approval code, and/or transaction amount. A common

business requirement is to improve the reconciliation process by identifying the card brand

or payment processor to facilitate the reconciliation process, therefore, portions of the prefix

must be stored.

DATA MINING AND DATA WAREHOUSING APPLICATIONS

Data mining and data warehousing applications have an entirely different set of business

requirements. These applications typically are looking for trends in and summarization of

transaction data, such as –

 Matching credit card use across transactions for customer profiling or fraud detection

regardless of expiration date, cardholder name, or other transaction data.

 Summarization of card brand transaction volume to optimize marketing and fees (e.g., what

is the average transaction amount for American Express Platinum vs. Green cards). Credit

card processing fees are a significant business expense and merchants often look to manage

this expense.

COMMON APPLICATION PRACTICES

CREDIT CARD DATA STORAGE

Based on the business requirements and PCI DSS requirements, hashing is a suitable method of

protecting and storing card numbers. Only hashing the card number is the minimum requirement

for PCI compliance, therefore, in many applications this is the only cardholder data value protected.

The card number is stored in some applications both encrypted and hashed to allow for efficient

searching and matching of card numbers. In addition to the card number being hashed, some

INTEGRIGY

Hashing Credit Card Numbers: Unsafe Application Practices 5 Copyright © 2007 Integrigy Corporation

 

digits of the card number may be stored as plain-text to support the various business requirements

outlined previously. The PCI DSS requirements 3.3 and 3.4 are ambiguous if storing in plaintext

any digits is acceptable as requirement 3.3 allows displaying up to the first 6 digits and last 4 digits.

Most ecommerce and payment applications that store credit card numbers hashed fall into one of

the six following design patterns related to storing other digits in plaintext –

Pattern Description

1. Card Number (hashed) Only the card number is stored hashed and no digits are stored as plain-

text. This pattern is usually in applications that also encrypt the card

number. The card number is stored as a hash to allow for efficient

searching and matching.

1. Card Number (hashed)

2. Brand

The card brand (Visa, MasterCard, American Express, etc.) is stored in

plain-text as a custom application value. The application will use the

brand ID to programmatically determine the card brand. This pattern is

usually in applications that also encrypt the card number. The brand is

used for reconciliation or easy retrieve for chargebacks and retrieval

requests.

1. Card Number (hashed)

2. Brand ID

The card brand ID is stored in plaintext, which will be the first 1 to 5

digits of the card number. This pattern is usually in applications that also

encrypt the card number. The brand is used for reconciliation or easy

retrieve for chargebacks and retrieval requests.

1. Card Number (hashed)

2. Brand ID

3. Last-4

The card brand ID and last 4 digits are stored in plaintext. This seems to

be a common design pattern and usually meets all necessary business

requirements.

1. Card Number (hashed)

2. Last-4

Only the last 4 digits are stored in plaintext to allow for returns and

credits processing. The last-4 digits are displayed on receipts, web

pages, application screens, and in reports.

1. Card Number (hashed)

2. Prefix-6

3. Last-4

This is the worst-case scenario where the first 6 digits and last 4 digits

are stored in plaintext. The business requirement is that the brand as

well as bank ID must be known.

HASH ALGORITHMS

Applications that hash credit card numbers typically use the widely accepted cryptographic hash

functions MD5 and SHA-1, as these two functions are readily available on a wide variety of

application platforms. The SHA-2 family of hash functions (SHA-224, SHA-256, SHA-384, and

SHA-512), WHIRLPOOL (an ISO standard), and RIPEMD-160 are used to lesser degrees due to

potential performance concerns, lack of availability on some application platforms, and perception

that SHA-1 is sufficient for most application applications. MD4 and other older hash functions are

seldom encountered in modern ecommerce and payment applications. The general opinion for PCI

DSS is that industry-standard cryptographic hash functions or encryption algorithms should be

used as the PCI Security Audit Procedures 1.1 [8] document specifically mentions SHA-1 by name,

therefore, the use MD5 may be unacceptable as well as any custom developed hash functions.

INTEGRIGY

Hashing Credit Card Numbers: Unsafe Application Practices 6 Copyright © 2007 Integrigy Corporation

 

HASH ALGORITHMS WEAKNESSES

The weaknesses and issues found in the MD5 and SHA-1 hash algorithms are related to finding

collisions where two strings produce the same hash ("collision-resistance") rather than any

inherent flaw in the algorithm that helps to determine the original string ("preimage-resistance").

These weaknesses regarding collisions in the MD5 and SHA-1 hash algorithms are irrelevant in the

discussion of hashing credit card numbers since only the original credit card number is meaningful.

The only demonstrable issue is that there may be a remote possibility of a collision between two

credit card numbers that would result in a false match when searching hashes.

HASH SALT

"Salt" is a value added to the original string to produce a unique hash, which may prevent the

same card numbers from producing the same hash and may make brute forcing hashes more

difficult. There are a number of limitations and issues related to using salt when hashing card

numbers –

 Salt value can never change since the card number can never be re-hashed.

 Salt must be a value always available when searching for a card number, otherwise a match

is not possible.

 If the salt value is from the transaction, then all card numbers must be searched by hashing

the searched card number with the salt value of every transaction.

 Only transaction ID, transaction date, transaction amount, and/or approval code may be

available for standard processes like chargebacks and retrieval requests, so hashing with

any other value would require the searched card number to be hashed with the salt value of

every prior transaction.

 Transactional data may not be available when the hash is created or may change after the

hash is created, therefore, should not used as salt. Examples include a delayed

authorization where the approval code is set at a later time or transaction amount may be

updated to correct an error or include a discount.

 For data warehousing applications, a frequent business requirement is that the same card

number must be matched across multiple transactions. Thus, the salt value must be fixed

for the same card number, but should not be card holder name, address, or expiration date

as these values may change over time.

Based on the above limitations and issues, this paper will assume no salt or a fixed salt is being

added to the card number.

INTEGRIGY

Hashing Credit Card Numbers: Unsafe Application Practices 7 Copyright © 2007 Integrigy Corporation

 

BRUTE FORCE HASH ATTACKS

ATTACK METHODS

A number of brute force attack methods can be used to obtain valid card numbers from

compromised hashes. This paper assumes the card number hash was generated using either MD5

or SHA-1 in a single pass with no salt or a fixed, known, and short salt for all card numbers – these

assumptions are based on our findings during multiple application security assessments.

The optimal attack method will vary based on the card brand mix and other factors such as number

of card numbers desired by the attacker and the anticipated end-use of the compromised card

numbers. The card brand mix will vary based on the merchant business segment (retail vs. travel

or b2c vs. b2b), sales channels (ecommerce vs. bricks and mortar), geographic location (United

States vs. Europe), and the brands accepted by the merchant.

This paper will highlight three different attack methods and estimate the time to brute force card

numbers –

Length Attack – As card numbers vary in length by brand, an attacker will first brute force

shorter length card numbers. It is possible to compromise all 14 and 15 digit card number in

less than thirteen days.

Brand Attack – The length of the brand ID varies by card brand, an attacker can attack longer

brand IDs. Attacking based on bank prefix (up to the first six digits are the bank prefix for

some brands) is the most optimal attack.

Known Digits Attack – The application may store from 4 to 10 digits in plain-text. If 10 digits

are in plain-text, an attacker can compromise all card numbers in less than 2 hours.

For these methods to be used, an internal or external attacker must be able to compromise the

application/database and obtain the necessary information including the following –

 Credit card hashes

 Card holder data including card holder name, address, and expiration date

 Credit card data stored in plain-text, which may include the last 4 digits, card brand

information, or first 6 digits

 Understanding of the hash method including salt that may be added to the hash by

obtaining application design documents, application code, or through testing of the

application (e.g., purchase something and try different algorithms on the hash)

INTEGRIGY

Hashing Credit Card Numbers: Unsafe Application Practices 8 Copyright © 2007 Integrigy Corporation

 

BRUTE FORCE BENCHMARK

In order to estimate and benchmark the time required to brute force hashes based on the MD5 and

SHA-1 algorithms, a prototype program was developed in C using the OpenSSL 0.9.8d

(www.openssl.org) assembly language MD5 and SHA-1 Windows dynamic link libraries and a

custom Luhn algorithm function. The program executes sequentially in a single thread and was

only minimally optimized with about a 30% performance improvement from initial tests to final

benchmark. All benchmarks were executed on an Intel Core2 Duo T7200 2.0 GHz processor

running the Microsoft Windows XP SP2 operating system.

All benchmarks were performed two ways: (1) all permutations with the check digit calculated for

the last digit and (2) when the check digit is known (i.e., last 4 digits known), all permutations are

generated and only permutations with valid check digits are hashed. When the check digit is

known, only about 8-12% of permutations are valid and need to be hashed by the brute force

program. Approximately 80% of the brute forcing processing time is related to generating the

hash versus generating the permutation, calculating the Luhn check digit, and comparing the

hashes.

Benchmark Brute Force

Benchmark

All permutations calculating last digit as check digit using

SHA-1 algorithm

1. Generate Permutation

2. Calculate Luhn check digit

3. Generate SHA-1 hash

4. Compare to compromised hashes

2 million hashes

per second

Only valid permutations when check digit is known

(discarding about 90% of total permutations) using the

SHA-1 algorithm

1. Generate Permutation

2. Calculate Luhn check digit

3. Compare to known check digit

a. If not valid, discard permutation

b. Otherwise, generate SHA-1 hash

4. Compare to compromised hashes

10 million hashes

per second

 Only about a 5% difference exists between MD5 and SHA-1 – the small difference is most

likely due to the fact that both of the OpenSSL algorithms are written in assembly language.

 The string length (card number + salt) only significantly impacted performance when string

length was greater than 64 bytes due to the internal processing of the hash algorithm.

 A dramatic decrease in performance was observed for SHA-256 as compared to SHA-1.

This is probably the result of the SHA-256 implementation in OpenSSL being written in C

rather than assembly language.

INTEGRIGY

Hashing Credit Card Numbers: Unsafe Application Practices 9 Copyright © 2007 Integrigy Corporation

 

With multi-threading, optimization, and a faster processor, we believe a brute force speed of over

50 million hashes per second is achievable for MD5 and SHA-1 with small string lengths. Using off-

the-shelf specialized MD5 and SHA-1 cryptographic co-processors, it may be possible to achieve

even faster brute force speeds.

BRUTE FORCE ESTIMATION TABLES

For each attack method, the possible number of permutations and estimated time to compromise

card numbers has been calculated. This is not meant to be an exhaustive analysis of all possible

methods, but illustrative of some basic approaches an attacker may use to compromise hashed

card numbers. By intelligently approaching the problem, an attacker most likely can break 30-70%

of all compromised hashes within a reasonable time period.

The estimation tables are for illustration only and may contain errors. The following assumptions

were used to generate the estimates –

 Card Brands – Only the most popular credit and charge card brands for the United States

and Europe are included. Debit and specialty cards are excluded.

 Brand IDs – The list of brand IDs was compiled from multiple sources. Most likely the brand

IDs used do not accurately represent all current and active brand IDs.

 Random Card Numbers – Card numbers are assumed to be randomly generated and there

exists no algorithm or logic to generate the digits between the brand ID, bank prefix, and

check digit. This may not be true for some card brands and the distribution of card number

most likely is not perfect.

 Brute Force Performance – The following benchmarks are used for time estimates –

1. Check digit not known = 2 million hashes or permutations per second

2. Check digit known = 10 million hashes or permutations per second

-

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

16 32 48 64 128 256 512 1024

M
ill

is
e

co
n

d
s

to
 p

ro
ce

ss

10
 m

ill
io

n
 p

e
rm

u
ta

ti
o

n
s

String Length

MD5

SHA-1

SHA-256

INTEGRIGY

Hashing Credit Card Numbers: Unsafe Application Practices 10 Copyright © 2007 Integrigy Corporation

 

A. LENGTH ATTACK

Card numbers are variable length based on the brand ID with the most popular card brands

ranging from 14 to 16 digits. As with any brute forcing of hashes, encryption keys, or passwords,

the shorter the value means the smaller number of possible permutations. If only the hashed

card number is available, it is actually practical to obtain all 14 and 15 digital card

number hashes in less than thirteen days.

If the Last-4 digits are stored in plaintext, each Last-4 combination (i.e., 1234) requires

significantly less time as the Luhn check digit results in only 1 in 10 permutations having to be

hashed. This increases the hash generation speed from 2M/sec to 10M/sec. About 0.01% of the

all compromised hashes can be obtained in just under five hours.

Paradoxically due to the check digit, it is actually more efficient to perform a full length attack

rather than attack all Last-4 combinations since when generating the Last-4 combination 9 of 10

permutations are discarded as invalid card numbers.

Brand Len Length Attack
Known

Last 4

Diners Club,

Diners Carte Blanche 14 160,000,000,000 160,000,000

American Express,

JCB (15) 15 2,020,000,000,000 2,020,000,000

Diners enRoute

(no check digit) 15 200,000,000,000 20,000,000

Visa, MasterCard, Discover,

JCB (16) 16 166,050,000,000,000 166,050,000,000

Estimated Time (h:mm:ss) All Hashes
per Last 4

Combination

Diners Club,

Diners Carte Blanche 14 22:13:20 0:00:16

American Express,

JCB(15) 15 280:33:20 0:03:22

Diners enRoute

(no check digit) 15 27:46:40 0:00:02

Visa, MasterCard, Discover,

JCB (16) 16 23062:30:00 4:36:45

Length Attack

Note: (card number length)

INTEGRIGY

Hashing Credit Card Numbers: Unsafe Application Practices 11 Copyright © 2007 Integrigy Corporation

 

B. BRAND ATTACK

A more efficient method is to brute force the hashes based on brand and brand IDs. For shorter

length card numbers and long brand IDs, this attack can obtain all the card numbers for a specific

brand in a matter of hours.

Attacking specific common prefixes can potentially obtain a significant number of card numbers for

large issuing banks in a matter of minutes. This information is not generally available, but

unauthorized lists of prefixes and bank identifiers are available on some Internet sites for the most

popular card brands.

If only the hashed card number is stored, an attacker can potentially obtain 30-70% of

all card numbers within a matter of hours by intelligently focusing on the most popular

card brands and issuing banks. The top ten commercial banks control over 90% of the credit

card market as measured by total credit card debt [9], thus the number of common prefixes is a

small subset of the possible 100,000 values. This attack can also be optimized by targeting

regional issuers.

Brand Len Brand Attack Brand ID Attack
Common Prefix

Attack

Visa 16 100,000,000,000,000 100,000,000,000,000 10,000,000,000

MasterCard 16 50,000,000,000,000 10,000,000,000,000 1,000,000,000

American Express 15 2,000,000,000,000 1,000,000,000,000 100,000,000

Discover (b=65) 16 10,000,000,000,000 10,000,000,000,000 -

Discover (b=6011x) 16 50,000,000,000 10,000,000,000 -

JCB (16) 16 6,000,000,000,000 100,000,000,000 -

JCB (15) 15 20,000,000,000 10,000,000,000 -

Diners Club 14 100,000,000,000 100,000,000,000 -

Diners enRoute 15 200,000,000,000 100,000,000,000 -

Diners Carte Blanche 14 60,000,000,000 10,000,000,000 -

Estimated Time (h:mm:ss) per Prefix

Visa 16 13888:53:20 13888:53:20 1:23:20

MasterCard 16 6944:26:40 1388:53:20 0:08:20

American Express 15 277:46:40 138:53:20 0:00:50

Discover (b=65) 16 1388:53:20 1388:53:20 -

Discover (b=6011x) 16 6:56:40 1:23:20 -

JCB (16) 16 833:20:00 13:53:20 -

JCB (15) 15 2:46:40 1:23:20 -

Diners Club 14 13:53:20 13:53:20 -

Diners enRoute 15 27:46:40 13:53:20 -

Diners Carte Blanche 14 8:20:00 1:23:20 -

All Hashes

Brand Attack

Note: (card number length) and (b=brand ID)

INTEGRIGY

Hashing Credit Card Numbers: Unsafe Application Practices 12 Copyright © 2007 Integrigy Corporation

 

C. KNOWN DIGITS ATTACK

An application may store the brand, brand ID, or first six digits along with the last 4 digits. If the

Prefix 6 + Last 4 digits are known, all card numbers can be obtained in less than 2 hours.

The Brand ID + Last 4 attack is much less efficient than attacking using common prefixes, but still

can obtain about 0.01% of card numbers quickly especially for some brands.

Brand Len
Known

Brand + Last 4

Known

Brand ID + Last 4

Known

Prefix 6 + Last 4

Visa 16 100,000,000,000 100,000,000,000 1,000,000

MasterCard 16 50,000,000,000 10,000,000,000 1,000,000

American Express 15 2,000,000,000 1,000,000,000 100,000

Discover (b=65) 16 10,000,000,000 10,000,000,000 1,000,000

Discover (b=6011x) 16 50,000,000 10,000,000 1,000,000

JCB (16) 16 6,000,000,000 100,000,000 1,000,000

JCB (15) 15 20,000,000 10,000,000 100,000

Diners Club 14 100,000,000 100,000,000 10,000

Diners enRoute 15 20,000,000 10,000,000 100,000

Diners Carte Blanche 14 60,000,000 10,000,000 10,000

Estimated Time (h:mm:ss)

Visa 16 2:46:40 2:46:40 0:00:00

MasterCard 16 1:23:20 0:16:40 0:00:00

American Express 15 0:03:20 0:01:40 0:00:00

Discover (b=65) 16 0:16:40 0:16:40 0:00:00

Discover (b=6011x) 16 0:00:05 0:00:01 0:00:00

JCB (16) 16 0:10:00 0:00:10 0:00:00

JCB (16) 15 0:00:02 0:00:01 0:00:00

Diners Club 14 0:00:10 0:00:10 0:00:00

Diners enRoute 15 0:00:02 0:00:01 0:00:00

Diners Carte Blanche 14 0:00:06 0:00:01 0:00:00

per Known Digits Combination (average 0.01%)

Known Digits Attack

Note: (card number length) and (b=brand ID)

INTEGRIGY

Hashing Credit Card Numbers: Unsafe Application Practices 13 Copyright © 2007 Integrigy Corporation

 

RAINBOW TABLES

Rainbow tables are pre-generated hashes for large sets of permutations. A rainbow table requires

significant processing power, time, and storage to initially generate, but can match a credit card

number in milliseconds. The disadvantages of a rainbow table are that it is fixed on a specific hash

algorithm, format of the credit card number, and salt. Generally, rainbow tables are most useful

with hashed passwords in widely deployed applications as the hashing algorithm and salt do not

change from system to system and the rainbow table can be reused repeatedly. In specific

situations, use of a rainbow table could dramatically reduce the time to compromise subsets of

credit card numbers, especially when card numbers are obtained over a period of time or from

multiple systems using the same hashing methods. This paper will not look at rainbow tables as

one-time brute forcing is usually as time efficient in most situations and does not require the

massive storage of a rainbow table.

CONCLUSION

Storing of credit card numbers by simply hashing only the card number is unacceptable and can be

easily compromised by brute force methods. An attacker who is able to compromise the

application or database can obtain many card numbers in a trivial amount of time –

 If only the hashed card number is available, it is actually practical to obtain all 14 and 15

digital card number hashes in less than thirteen days.

 If only the hashed card number is stored, an attacker can potentially obtain 30-70% of all

card numbers within a matter of hours by intelligently focusing on the most popular card

brands and issuing banks.

 If the Prefix 6 + Last 4 digits are known, all card numbers can be obtained in less than 2

hours.

Hashing of credit card numbers is an acceptable solution if designed to protect against brute force

methods, while still satisfying the basic business requirements. Ecommerce and payment

applications should use the strongest available cryptographic hash algorithm (like SHA-512),

always use large salt values, and perform multiple hash iterations (at least 100 iterations) in order

to reduce brute force efficiency.

The use of salt in the hashing process is most problematic due to business requirements. A

significant advantage to using salt in a custom application is that an attacker has to determine or

obtain application code where card number is hashed. This is particularly effective in situation

when the attacker can only exploit a query-only SQL injection vulnerability. In the case of an

INTEGRIGY

Hashing Credit Card Numbers: Unsafe Application Practices 14 Copyright © 2007 Integrigy Corporation

 

internal attacker, open source applications, or widely-deployed commercial applications, there is

probably little to no advantage.

Optimally, the salt should be transaction specific (either a transaction value or a random number),

thus requiring an attacker to calculate all permutations for each transaction. Although, transaction

specific salt does not work with tracking card numbers across transactions nor allows for efficient

searching and matching of card numbers as the search for card number must be hashed with every

transaction value. Using a static salt or one derived from the card number is of limited value as

the attacker still only has to make one pass through all the possible permutations. A secret key

can be effectively used as a salt value, albeit this defeats some of the reasons for hashing in the

first place and requires the same key management as encryption. Another option is to use an

especially large salt value, like 4KB, that is computationally more expensive and will reduce brute

force efficiency as the internal hash algorithm processing is based on blocks (SHA-1 uses 512-bit

blocks). The advantage of this technique is that it has no affect the stored hash value size. In our

benchmark, increasing the string size from 16 bytes to 1,024 bytes (15 more internal 512-bit

blocks) increased brute force time by about 400%.

INTEGRIGY

Hashing Credit Card Numbers: Unsafe Application Practices 15 Copyright © 2007 Integrigy Corporation

 

REFERENCES

1. Roger Nebel, "Hashing for fun and profit: Demystifying encryption for PCI DSS", 6

December 2006,

http://searchsecurity.techtarget.com/tip/0,289483,sid14_gci1230572,00.html

2. Kurt Seifried, "Storing credit card numbers securely", 10 September 2001,

http://www.seifried.org/security/cryptography/20011009-storing-cc.html

3. John Deters, " Taylor's Law: John Deters's Rebuttal", 21 August 2002,

http://www.miketaylor.org.uk/tech/law2.html

4. Branden Williams, "Eliminating Card Numbers to Minimize PCI Exposure", 2006,

http://www.verisign.com/static/036133.pdf

5. PCI Security Standards Council, "Payment Card Industry Data Security Standard 1.1",

September 2006, https://www.pcisecuritystandards.org/tech/download_the_pci_dss.htm

6. Visa U.S.A., "Cardholder Information Security Information Program (CISP) Payment

Application Best Practices 1.3", 8 May 2006,

http://usa.visa.com/download/business/accepting_visa/ops_risk_management/cisp_payme

nt_application_best_practices.doc

7. Wikipedia, "Credit card number", 2 February 2007,

http://en.wikipedia.org/wiki/Credit_card_numbers

8. PCI Security Standards Council, "Payment Card Industry Data Security Standard Security Audit

Procedures 1.1", September 2006,

https://www.pcisecuritystandards.org/pdfs/pci_audit_procedures_v1-1.pdf

9. Federal Reserve Bank of Philadelphia, "WORKING PAPER NO. 05-29", page 10, 5 December

2005, http://www.phil.frb.org/files/wps/2005/wp05-29.pdf

HISTORY

February 27, 2007 – Initial Version

http://searchsecurity.techtarget.com/tip/0,289483,sid14_gci1230572,00.html
http://www.seifried.org/security/cryptography/20011009-storing-cc.html
http://www.miketaylor.org.uk/tech/law2.html
http://www.verisign.com/static/036133.pdf
https://www.pcisecuritystandards.org/tech/download_the_pci_dss.htm
http://usa.visa.com/download/business/accepting_visa/ops_risk_management/cisp_payment_application_best_practices.doc
http://usa.visa.com/download/business/accepting_visa/ops_risk_management/cisp_payment_application_best_practices.doc
http://en.wikipedia.org/wiki/Credit_card_numbers
https://www.pcisecuritystandards.org/pdfs/pci_audit_procedures_v1-1.pdf
http://www.phil.frb.org/files/wps/2005/wp05-29.pdf

INTEGRIGY

Hashing Credit Card Numbers: Unsafe Application Practices 16 Copyright © 2007 Integrigy Corporation

 

ABOUT INTEGRIGY

Integrigy Corporation is a leader in application security for large enterprise, mission critical

applications. Our application vulnerability assessment tool, AppSentry, assists companies in

securing their largest and most important applications. AppDefend is an intrusion prevention

system for Oracle Applications and blocks common types of attacks against application servers.

Integrigy Consulting offers security assessment services for leading ERP and CRM applications.

Integrigy Corporation

P.O. Box 81545

Chicago, Illinois 60602 USA

888/542-4802

TUwww.integrigy.comUT

Copyright © 2007 Integrigy Corporation.

Author: Stephen Kost

If you have any questions, comments or suggestions regarding this document, please send them via e-mail to

alerts@integrigy.com.

The Information contained in this document includes information derived from various third parties. While the Information

contained in this document has been presented with all due care, Integrigy Corporation does not warrant or represent that

the Information is free from errors or omission. The Information is made available on the understanding that Integrigy

Corporation and its employees and agents shall have no liability (including liability by reason of negligence) to the users for

any loss, damage, cost or expense incurred or arising by reason of any person using or relying on the information and

whether caused by reason of any error, negligent act, omission or misrepresentation in the Information or otherwise.

Furthermore, while the Information is considered to be true and correct at the date of publication, changes in circumstances

after the time of publication may impact on the accuracy of the Information. The Information may change without notice.

Integrigy's Vulnerability Disclosure Policy – Integrigy adheres to a strict disclosure policy for security vulnerabilities in order

to protect our clients. We do not release detailed information regarding individual vulnerabilities and only provide

information regarding vulnerabilities that is publicly available or readily discernable. We do not publish or distribute any

type of exploit code. We provide verification or testing instructions for specific vulnerabilities only if the instructions do not

disclose the exact vulnerability or if the information is publicly available.

Integrigy, AppSentry, and AppDefend are trademarks of Integrigy Corporation. Other names may be trademarks of their

respective owners.

http://www.integrigy.com/
mailto:alerts@integrigy.com

	Payment Card Industry Data Security Standard
	Predictability of Credit Card Numbers
	Credit Card Processing Business Requirements
	Ecommerce and Payment Applications
	Data Mining and Data Warehousing Applications

	Credit Card Data Storage
	Hash Algorithms
	Hash Algorithms Weaknesses

	Hash Salt
	Attack Methods
	Brute Force Benchmark
	Brute Force Estimation Tables
	A. Length Attack
	B. Brand Attack
	C. Known Digits Attack
	Rainbow Tables

